SCOPE Documentation

Release 1.8

Egor

Nov 05, 2020

CONTENTS

1	Model capabilities	3
2	Getting started	15
3	Options	19
4	Directories	27
5	Output files	33
6	Brief history of the model	45
7	Acknowledgements	47
8	Roadmap	49
9	References	51
10	Version history	53
11	Support	59
12	Structs	61
13	API	99
Bit	bliography	115
MA	ATLAB Module Index	117
Inc	dex	119

Soil Canopy Observation, Photochemistry and Energy fluxes (SCOPE, Van der Tol at al. 2009 [11]) radiative transfer model.

CHAPTER

ONE

MODEL CAPABILITIES

1.1 Spectra

For thermal part radiance enable options.calc_planck & options.calc_ebal.

For soil reflectance simulation with BSM model enable options.soilspectrum

1.1.1 Definition

Optical part of spectrum takes into account the ability of objects (leaves, soil) to reflect the light.

Thermal part of spectrum is based on Planck's law that is any object that has temperature above 0 K **emits** electromagnetic waves.

SCOPE model uses the theory of radiative transfer describing electromagnetic waves propagation and takes into account absorption and scattering.

There are 3 components in the model:

- 1. soil
- 2. leaf
- 3. canopy

1.1.2 SCOPE soil

SCOPE simulates soil reflectance (optical domain) with *BSM()* (if options.soilspectrum). Alternatively, a file with soil reflectance spectrum might be provided (several options are in ./data/input/soil_spectrum/soilnew.txt*).

On the graph you can see the difference.

1.1.3 SCOPE leaf

SCOPE model (in particular *fluspect_B_CX_PSI_PSII_combined()*) works similar to PROSPECT model and simulated leaf reflectance, transmittance and absorption (the rest). Bonus part is fluorescence.

The other bonus is xanthopyll cycle, available with option.calc_xanthophyllabs, that you might see as a tiny pick around 500 nm.

Note: We do not have a model for thermal emission of a single leaf. Any suggestions?

1.1.4 SCOPE canopy

SCOPE represents canopy as 60 elementary layers of leaves of two types: sunlit (then we account for leaf inclinations) and shaded.

Leaf and soil optical properties are taken into account here.

Optical properties are calculated by RTMO() and thermal properties by either $RTMt_planck()$ then the output is radiance (as on the graph) or $RTMt_sb()$ - only integrated fluxes.

Note: default configuration uses Stefan-Boltzmann's law (*RTMt_sb()*) that will output **spectrally integrated** thermal fluxes instead of per wavelength, in this case:

- integral of hemispherical thermal radiance is 432.5 W m-2
- integral of direct radiance 140.4 W m-2

1.2 Fluorescence

options.calc_fluor

1.2.1 Definition

Light reaching a leaf (pretty much any object) can be reflected, transmitted or absorbed. In plants absorbed light can be spent on three different processes:

- 1. photochemistry (assimilation CO2)
- 2. non-photochemical quenching (NPQ): heat dissipation
- 3. chlorophyll fluorescence excitation

Fig. 1: Source: http://spie.org/newsroom/4725-remote-sensing-of-terrestrial-chlorophyll-fluorescence-from-space? SSO=1

>>> Fluorescence **is** light emitted by chlorophyll molecules **in** the range 640-800 nm.

1.2.2 SCOPE

Fluorescence light (pretty much as any light) can be absorbed and scattered on its way to a sensor.

SCOPE model simulates 3 hemispherical fluorescence quantiles:

- 1. fluorescence emitted by all photosystems without any scattering / re-absorption neither within leaf, nor withing canopy
- 2. fluorescence emitted by all leaves without any scattering / re-absorption within canopy or from soil
- 3. fluorescence emitted by canopy (all leaf layers) accounting for all scattering / re-absorption events

Note: Notice the difference in ranges and units between directional and hemispherical fluorescence.

SCOPE model simulates directional fluorescence (the one that actually reaches a sensor) and its components coming from:

- 1. sunlit leaves
- 2. shaded leaves
- 3. scattered by leaves and soil

It is also possible to partition directional fruorescence between photosystem I and II (PSI, PSII) with <code>options.calc_PSI</code>, not recommended though.

Note: There are much more outputs of *biochemical()* related to Pulse-Amplitude-Modulation (PAM) Fluorometry quantiles that are stored in internal structure biochem_out.

1.3 Energy balance

options.calc_ebal

1.3.1 Definition

Net radiation (Rn): .. http://www.indiana.edu/~geog109/topics/04_radiation/4c-RadiationBalance_nf.pdf

>>> Rn = (SW_in - SW_out) + (LW_in - LW_out)

SW - shortwave radiation (400-2400 nm)

LW - longwave (thermal) radiation

Net radiation can be partitioned into 3 (4) heat fluxes:

>>> Rn = H + lE + G

- H sensible heat
- lE latent heat
- G ground heat flux

1.3.2 SCOPE

With options.calc_ebal energy balance loop is started until the energy balance is closed (net radiation become equal to heat fluxes).

To close energy balance leaf temperatures and Monin-Obukhov length L are iteratively adjusted.

This how it looks like:

Leaf temperatures are calculated by biochemical () or biochemical_MD12().

Initial values of soil and leaf temperatures are equal to ambient temperature (Ta).

Monin-Obukhov length influences on aerodynamic resistances values.

The results of energy balance calculations are the following:

variable	units	canopy	soil	total
Н	W m-2	115.5	19.5	135.0
IE	W m-2	146.2	44.9	191.1
G	W m-2	-	35.0	35.0
Rn	W m-2	261.7	100.1	361.8

Also SCOPE calculates photosynthesis of canopy which in this case was 18.7 umol m-2 s-1

Radiation budget is also calculated by SCOPE:

variable	units	in	out	net
SW	W m-2	600	104.4	495.6
LW	W m-2	300	434.0	-134.0
Rn	W m-2	-	-	361.8

1.4 Vertical profiles

options.calc_vert_profiles & options.calc_ebal

1.4.1 Definition

We assume, it's not needed.

1.4.2 SCOPE

SCOPE represents canopy as 60 elementary layers of leaves of two types: sunlit (then we account for leaf inclinations) and shaded.

Components of energy balance, temperature and fluorescence can be calculated for each layer with options. calc_vert_profiles

Warning: To produce this graph profiles were flipped so that soil is layer #0 and first canopy layer is layer #1. This way top of canopy is actually at the top of the graph (layer #60).

1.5 **BRDF**

options.calc_directional & options.calc_ebal

Warning: This is an advanced topic, please refer to Schaepman-Strub et al. 2006 [4] for further explanations.

1.5.1 Definition

Light consists of two components direct (aka specular) and diffuse (aka hemispherical).

To explain reflectance of each light component individually, different reflectance factors are used.

SCOPE model simulates the following reflectance factors:

- Incoming light is directional
 - CASE 1: bidirectional (BRF)
 - CASE 2: directional-hemispherical (DHRF)
- · Incoming light is hemispherical
 - CASE 7: hemispherical-directional (HDRF)
 - CASE 9: bihemispherical (HRF)

After reflectance from a material *direct component* of incoming light contributes to both directional and hemispherical component of reflected light.

After reflectance from a material *diffuse component* of incoming light also contributes to both directional and hemispherical component of reflected light.

Incoming/Reflected Directional Conical Hemispherical Directional Directional-hemispherical Bidirectional Directional-conical CASE 1 CASE 2 CASE 3 Conical Conical-directional Biconical Conical-hemispherical CASE 4 CASE 6 CASE 5 Hemispherical Hemispherical-directional Hemispherical-conical Bihemispherical CASE 7 CASE 8 CASE 9

Table 2 Relation of incoming and reflected radiance terminology used to describe reflectance quantities

The labeling with 'Case' corresponds to the nomenclature of Nicodemus et al. (1977). Grey fields correspond to measurable quantities (Cases 5, 8), the others (Cases 1–4, 6, 7, 9) denote conceptual quantities. Please refer to the text for the explanation on measurable and conceptual quantities.

Fig. 2: From Schaepman-Strub et al. 2006 [4].

Note: Bidirectional Reflectance Distribution Function is a function describing bidirectional reflectance from a material.

- "input" of BRDF are four angles (solar zenith and azimuth angle (direction of incoming light); viewing zenith and azimuth angle (direction of observation))
- "output" of BRDF is reflectance (BRF)

1.5.2 SCOPE

To simulate BRDF enable options.calc_directional.

SCOPE calculates BRDF itself and also directional fluorescence radiance and directional thermal radiance (or brightness temperature).

Directional plots have 3 components:

- viewing zenith angle (towards the centre of the circle)
- viewing azimuth angle (around the circle)
- measured quantity (color)

On all graphs you can see a hot spot (red dot) where viewing azimuth angle is 0° and viewing zenith angle is 30°.

Hot spot occurs when the observation direction coincides with the illumination direction. Indeed, for this example *solar* zenith angle of 30° was used.

Directional plots are made per wavelength.

Fluorescence @ 680 nm (W $m^2 \mu m^{-1} sr^{-1}$)

2

1.8

1.6

1.4

Fig. 3: Courtesy of Peiqi Yang

CHAPTER

TWO

GETTING STARTED

Contents

- Getting started
 - 0. Software requirements
 - 1. Unpack the zip file
 - 2. Run the model once
 - 3. Set the input in input_data.xlsx
 - 4. Analyse the output
 - 5. Going further

2.1 0. Software requirements

The model SCOPE_v1.73 is written in Matlab R2015b running on a Windows operating system. We took care not to use functions that are available in all recent Matlab versions, but we cannot give any warranty that it works under other operating systems and other Matlab versions.

Warning: If you do not have Matlab on your computer you can use SCOPE.exe with Matlab Runtime only R2017b (version 9.3)

Compiled version SCOPE.exe can be run only with the Excel file input (input_data.xlsx).

SCOPE consists of several scripts and functions (modules), which can be used separately or as parts of the integrated SCOPE model (SCOPE.m).

When the modules are used separately, then it is important to provide input in the structures specified in *Structs*.

When the integrated model is called, then the input is automatically loaded from the spreadsheet *input_data.xlsx* and from the files specified in *./data/*input.

Basic knowledge of the use of Matlab is required to operate the model.

The application of the model involves the following steps:

2.2 1. Unpack the zip file

Unpack the model, and leave the directory structure intact.

2.3 2. Run the model once

Run the model once, before modifying the parameters and input. It will check whether the software works under your system. The model runs with an example data set (options.verify), and the output is automatically compared to output that it should produce. If there is any difference in the results, messages will show up.

- Navigate to the directory where the matlab code is ./SCOPE_v1.73/src
- Open SCOPE.m in Matlab
- in Matlab command window type:

SCOPE

Running the model may take a while because almost all options are switched on. If the output of the model is not as expected, then messages will appear. There will also be graphs appearing showing the freshly produced output together with the expected output. If all is ok then no graphs or warnings are produced.

2.4 3. Set the input in input_data.xlsx

Main input file i``input_data.xlsx`` with 4 sheets is located in ./SCOPE_v1.73. In the documentation we refer to this file, although text alternatives are also possible.

Note: If Excel is not available, it is possible to use input from text files (.m and .txt). See alternative.

To specify which input to use (text or excel) comment / uncomment lines in set_parameter_filenames.m` with ``% sign.

Warning: Compiled version SCOPE.exe can be run only with the Excel file input (input_data.xlsx).

sheet (tab)	content	alternative
readme		-
	sheets description of input_data.xlsx explanation of leaf inclination distribution function (LIDF) parameters recommended values for plan functional types (PFTs) some parameter ranges	
options	Options	setoptions.
		m
filenames	filenames for current simulation and for time-series	filenames.
		m
inputdata	values for <i>input structs</i>	inputdata.
		txt

To find out ranges and units of input parameters take a look into *input structs*. Pay extra attention to the *simulation*

2.5 4. Analyse the output

All output files and their content (variables, units) are available at *Output files*. Some output files are available for each run, the others can be written with various *Options*. To plot the output either select options.makeplots or use function from *plots()*

Note: Radiation, spectral and fluorescence output usually has two quantiles:

- outgoing diffuse light (hemispherical) W m-2 um-1
- outgoing light in observation directions (directional, the one that actually reaches the sensor) W m-2 um-1 sr-1

To get further information see: Definition

2.6 5. Going further

SCOPE.m is a script, thus after a run all matlab structures that were generated during the run (input, output, constants) are available in the workspace. You can get some extra variables that are not written to output files. You can find out available variables at *Structs*.

All functions are documented within the code and also at API.

For any questions, please, use SCOPE_model SCOPE_model group.

CHAPTER

THREE

OPTIONS

Effectively this are (almost¹²) all capabilities of the SCOPE model.

- Initialized
- Rules of input reading
 - simulation
- Variations in input
 - rt_thermal
 - calc zo
 - soilspectrum
 - soil_heat_method
 - calc_rss_rbs
- Variations in output
 - calc_ebal
 - calc_planck
 - calc_directional
 - calc_xanthophyllabs
 - calc_vert_profiles
 - calc_fluor
 - calc_PSI
 - Fluorescence_model
 - apply_T_corr
- For users' comfort
 - verify
 - save_headers
 - makeplots

 $[\]frac{1}{2}$ extra output variables that are not saved to files (see *Structs*) are available in the workspace after the model run. $\frac{2}{2}$ model can be varied by user, please, consult *API* to learn signatures of functions

This is an input structure that controls the workflow.

The values have binary (or tertiary) logic thus equal to 0 or 1 (or 2).

Influence on the output files is highlighted in the corresponding section Output files

Note: Not all combinations can bring to the desired result

3.1 Initialized

SCOPE.m: read from input_data.xlsx or setoptions.m

3.2 Rules of input reading

3.2.1 simulation

Defines rules of input reading

Switch in SCOPE.m (multiple)

0 individual run(s): specify one value for fixed input parameters, and an equal number (> 1) of values for all parameters that vary between the runs.

1

time series (uses text files with meteo input as time series from "../data/input/dataset X" with files similar to
../data/input/dataset for_verification specified on the filenames sheet of input_data.xslx
load_timeseries()

2 Lookup-Table: specify a number of values in the row of input parameters. All possible combinations of inputs will be used.

Let us illustrate what the difference is in details.

It is possible to specify several values in a row on inputdata sheet of input_data.xslx. Suppose we have an the following combination of input parameters. Notice, we provide two values for Cab and Cca parameters.

If **individual run(s)** (options.simulation == 0) was chosen the given combination will end up in **two** simulations:

- Cab=80, Cca=20
- Cab=40, Cca=10

If **Lookup-Table** (options.simulation == 2) was chosen the given combination will end up in **four** simulations:

- Cab=80, Cca=20
- Cab=80, Cca=10
- Cab=40, Cca=20
- Cab=40, Cca=10

3.3 Variations in input

3.3.1 rt_thermal

Leaf and soil emissivity in thermal range Switch in SCOPE.m

0

provide emissivity values as input *leafbio* (rho_thermal, tau_thermal), *soil*.rs_thermal

1 use values from fluspect and soil at 2400 nm for the TIR range

3.3.2 calc_zo

roughness length for momentum of the canopy (zo) and displacement height (d)

```
Switch in select_input() load_timeseries()
```

0

zo and d values provided in the inputdata canopy

1 calculate zo and d from the LAI, canopy height, CD1, CR, CSSOIL (recommended if LAI changes in time series) zo_and_d()

3.3.3 soilspectrum

Calculate soil reflectance or use from a file in ../data/input/soil_spectrum

Switch in SCOPE.m

0

use soil spectrum from the file with *soil*.spectrum default file is soilnew.txt, can be changed on the filenames sheet soil_file cell variable name is rsfile

1 simulate soil spectrum with the BSM model (BSM()) parameters are fixed in code

3.3.4 soil_heat_method

Method of ground heat flux (G) calculation

Switch in SCOPE.m, select_input(), ebal()

0

```
standard calculation of thermal inertia from soil characteristic
Soil_Inertia0() in select_input()
```

1

empirically calibrated formula from soil moisture content *Soil_Inertial()* in *select_input()*

2

```
as constant fraction (0.35) of soil net radiation
Soil_Inertia0() in select_input()
```

3.3.5 calc_rss_rbs

soil resistance for evaporation from the pore space (rss) and soil boundary layer resistance (rbs)

```
Switch in select_input()
```

0

use resistance rss and rbs as provided in inputdata soil

1 calculate rss from soil moisture content and correct rbs for LAI calc_rssrbs()

3.4 Variations in output

RTMO() (SAIL) is executed in any valid run. Other functions may be included with these options.

3.4.1 calc_ebal

Switch in SCOPE.m

0

Only RTMo() is run (with RTMf() if options.calc_fluor)

1

Calculate the complete energy balance.

Warning: required for calc_planck, calc_directional, calc_xanthophyllabs

3.4.2 calc_planck

Calculate spectrum of thermal radiation with spectral emissivity instead of broadband

Warning: only effective with calc_ebal == 1

Switch in SCOPE.m, calc_brdf()

0

 $RTMt_sb()$ - broadband brightness temperature is calculated in accordance to Stefan-Boltzman's equation.

1

```
RTMt_planck() is launched in SCOPE.m and calc_brdf() (if calc_directional). Calculation is done per each wavelength thus takes more time than Stefan-Boltzman.
```

3.4.3 calc_directional

Calculate BRDF and directional temperature for many angles specified in the file: directional.

Warning:

- only effective with calc_ebal == 1
- Be patient, this takes some time

Switch in SCOPE.m, calc_brdf()

```
0
```

1

struct directional is loaded from the file directional
calc_brdf() is launched in SCOPE.m

3.4.4 calc_xanthophyllabs

Calculate dynamic xanthopyll absorption (zeaxanthin) for simulating PRI (photochemical reflectance index)

Warning:

• only effective with calc_ebal == 1

Switch in SCOPE.m

0

1 *RTMz()* is launched in SCOPE.m and *calc_brdf()* (if calc_directional)

3.4.5 calc_vert_profiles

Calculation of vertical profiles (per 60 canopy layers).

Corresponding structure *profiles*

Switch in SCOPE.m, RTMo() and ebal()

0

Profiles are not calculated

1

Photosynthetically active radiation (PAR) per layer is calculated in *RTMO()* Energy, temperature and photosynthesis fluxes per layer are calculated in *ebal()* Fluorescence fluxes are calculated in *RTMf()* if (calc_fluor)

3.4.6 calc_fluor

Calculation of fluorescence

Switch in SCOPE.m, calc_brdf()

0

No fluorescence

1

RTMf() is launched in SCOPE.m and *calc_brdf()* (if calc_directional) total emitted fluorescence is calculated by SCOPE.m

3.4.7 calc_PSI

Separate fluorescence of photosystems I and II (PSI, PSII) or not

```
Switch in SCOPE.m, select_input()
```

0

recommended

treat the whole fluorescence spectrum as one spectrum (new calibrated optipar)
fluspect_wersion fluspect_B_CX_PSI_PSII_combined()

1

differentiate PSI and PSII with Franck et al. spectra (of SCOPE 1.62 and older)
fluspect version fluspect_B_CX()
fluorescence quantum efficiency of PSI is set to 0.2 of PSII in select_input()

3.4.8 Fluorescence_model

Fluorescence model

Switch in ebal()

0

empirical, with sustained NPQ (fit to Flexas' data)

1 empirical, with sigmoid for Kn: biochemical() (Berry-Van der Tol)

2 biochemical_MD12() (von Caemmerer-Magnani)

3.4.9 apply_T_corr

correct Vcmax and rate constants for temperature

Warning: only effective with Fluorescence_model != 2 i.e. for biochemical()

Switch in ebal()

0

1 correction in accordance to Q10 rule

3.5 For users' comfort

3.5.1 verify

verify the results (compare to saved 'standard' output) to test the code for the first time

 $Switch \ \textsc{in} \ \texttt{SCOPE.m}$

•

0

1 runs output_verification()

3.5.2 save_headers

write header lines in output files
Switch in create_output_files()
0

1 runs additional section in create_output_files () which writes two lines (names, units) in output files

3.5.3 makeplots

٠

plot the results Switch in SCOPE.m

•

1 launches plots() for the results of the last run

CHAPTER

FOUR

DIRECTORIES

4.1 SCOPE_v1.73

Contents	
• <i>SCOPE_v1.73</i>	
– Files	
<pre>* input_data.xlsx</pre>	
– Directories	
* output	
* STC	

4.1.1 Files

input_data.xlsx

Main input file is input_data.xlsx with 4 sheets. In the documentation we refer to this file, although text alternatives are also possible.

Note: If Excel is not available, it is possible to use input from text files (.m and .txt). See alternative.

To specify which input to use (text or excel) comment / uncomment lines in <code>set_parameter_filenames.m`</code> with ``% sign.

sheet (tab)	content	alternative
readme		-
	<pre>sheets description of input_data.xlsx explanation of leaf inclination distribution function (LIDF) parameters recommended values for plan functional types (PFTs) some parameter ranges</pre>	
options	Options	setoptions.
filonamos	filenames for current simulation and for time series	filonamor
menames	inchances for current simulation and for time-series	m
inputdata	values for <i>input structs</i>	inputdata.
		txt

4.1.2 Directories

output

The function <code>output_data()</code> saves the output of SCOPE in an output directory.

In SCOPE, output_data is called after each calculation.

The data are stored in the following directory: SiteName_yyyy-mm-dd-hh-mm

In which yyyy refers to the Julian year,

mm to the month,

dd the day,

hh the hour and

mm the minutes

of the time when the simulation was started.

for files see Output files

src

.m files with the code.

- +equations
- +helpers
- +*io* (*input output*)
- +*plot*
- not_used

4.2 data

Contents	
• data	
- 1	input
	* dataset for_verification
	* directional
	* fluspect_parameters
	* leafangles
	* radiationdata
	* soil_spectrum
- 1	neasured

4.2.1 input

dataset for_verification

'Dataset for_verification' contains time series of meteorological data. In this case, half-hourly data are provided. It is possible to work with any time interval, but due to the thermal inertia of the soil, the calculation of soil temperature may not be accurate when the time interval is longer than three hours. It is recommended to name your own dataset 'dataset sitename or projectname'. The directory contains the following compulsory files (all in ASCII format):

- A time vector (t_.dat): a vertical array of time values, in decimal days of the year [1:366.99]. For example, 10 January 2009, 12:00 would be: 10.5. All other files (see below) should correspond to this time vector (and thus have the same size).
- A year vector (year_.dat): the year corresponding to the time vector. For example, 10 January 2009, 12:00 would be: 2009
- TOC incoming shortwave radiation (Rin_.dat): a broadband (0.3 to 2.5 m) measurement of incoming shortwave radiation (W m-2), perpendicular to the surface.
- TOC incoming long wave radiation (Rli_.dat): a broadband (2.5 to 50 m) measurement of incoming long wave radiation (W m-2), perpendicular to the surface.
- Air pressure (p_.dat): air pressure (hPa or mbar)
- Air temperature measured above the canopy (Ta_.dat): air temperature above the canopy in °C.
- Vapour pressure measured above the canopy (e_.dat): vapour pressure above the canopy (hPa or mbar).
- Wind speed (u_.dat): wind speed measured above the canopy (m s-1)

The following additional files (not compulsory) can be added:

• Carbon dioxide concentration measured above the canopy (mg m-3)

And the following tables (not compulsory):

- Leaf area index (LAI_.dat)
- Measurement height (z_.dat) (m)

- Vegetation height (h_.dat) (m)
- Maximum carboxylation capacity (Table_Vcmax_.dat)
- Chlorophyll content file (Table_Cab_.dat)

If a table is not present, then the corresponding a priori value specified in the file input_data.xlsx file is used instead. It is only useful to create the tables LAI_dat etc. if the leaf area index, measurement height, vegetation height etc. change with time during the measurement period.

A table has a slightly different format than the other input files. A table has two columns: the first column contains the decimal DOY, the second column contains the value of the variable. The reason why tables have a different format is that the variables in the table are usually not measured at the same time interval as the meteorological input. For example, the LAI may be measured only once per month.

An example of a table can be found in 'dataset for_verification'. The measurement height is only relevant for wind speed, vapour pressure and the carbon dioxide concentration. It is currently not possible to specify separate measurement heights for each of these variables.

The carbon dioxide concentration must be provided in mg m-3. This is a commonly used unit in most data sets. SCOPE automatically converts this to ppm and to umol m-3 internally. If the carbon dioxide concentration file is not provided, SCOPE assumes a constant concentration corresponding to 380 ppm.

Note: It is important that all files except for the tables have equal length, and that all measurements correspond to the time vector. A Julian calendar is used. The time zone should be provided (the difference between the local time in the file and UTC or GMT. Input files should be comma separated, space separated or tab separated ASCII files. They should not contain empty lines or comment lines.

In case SCOPE is run in individual mode, then the meteorological input files are not used. In that case, all meteorological data are taken from the spreadsheet.

directional

The input in the directory 'directional' is only used for multi-angle simulations (if the option 'directional' is switched on in parameters. In this directory one can provide the observer's zenith and azimuth angles. The files in this directory have two columns: the first column is the observer's zenith angle, the second the observer's azimuth (relative to that of the sun, counterclockwise), both in degrees. If the option directional is switched on, SCOPE will calculate the radiance spectrum in all directions given in the input file.

fluspect_parameters

In this directory, absorption spectra of different leaf components are provided, according to PROSPECT 3.1, as well as Fluspect input: standard spectra for PSI and PSII.

leafangles

In this folder, example leaf inclination distribution data are provided. It is possible to use these distributions instead of the leafinclination model of Verhoef (1998 [6]) with the two parameters LIDFa and LIDFb. In that case, provide a filename in the input_data.xlsx tab filenames or the file filenames.m.

radiationdata

RTMO.m calculates spectra based on MODTRAN5 outputs. One .atm (atmospheric) file is provided in the data, 12 more are provided separately in a different .zip folder (in order to minimize the size of the SCOPE package, these are not provided standard). Note that in the input data (files as well as the spreadsheet), the broadband input radiation may be provided. SCOPE linearly scales the input spectra of the optical and the thermal domain in such a way, that the spectrally integrated input shortwave and long wave radiation matches with the measured values. A limitation of this approach is that the same shape of the input spectrum is used independent on the atmospheric conditions. If this scaling is not wanted, then leave 'Rin' and 'Rli' empty in the spreadsheet.

Note: In earlier versions of the model (1.34 and older), two input spectra of solar and sky radiation were provided (rad.txt and rad2.txt) in this directory. The data were calculated with MODTRAN4. The ASCII file in this directory consisted of three columns containing the following. The first column contained the wavelength in nm, the second column the solar radiation in W m-2 m-1, and the third column the sky radiation in W m-2 m-1. These data are now obsolete (since version 1.40).

soil_spectrum

In this directory, the soil spectrum is provided. The ASCII file in this directory consists of two columns containing the following: The first column contains the wavelength in m, the following columns reflectance spectra. Note that it is also possible to simulate a soil reflectance spectrum with the BSM model. In that case the values for the BSM model parameters are taken from the input data, and the archived spectra in this folder are not used.

4.2.2 measured

The validation data are stored in directory 'measured'. It is up to the user to organize this directory.

Warning: Do not change directory names or file names inside them!

```
SCOPE-master.zip

SCOPE_v1.73

output

example_directional_run

Directional

Parameters

verificationdata

Src

+equations

+helpers

+io

+plot

not_used
```

(continues on next page)

(continued from previous page)

data
- input
dataset for_verification
directional
fluspect_parameters
leafangles
PFT
radiationdata
measured
dataset Duke
dataset for_verification
dataset Merzenhausen
- dataset reading 1
- dataset reading 2
dataset varnton 2013
L_ docs
FIVE

OUTPUT FILES

5.1 In each simulation

Contents

• In each simulation

- aerodyn.dat

- BOC_irradiance.dat
- fluxes.dat
- irradiance_spectra.dat
- pars_and_input.dat
- pars_and_input_short.dat
- radiation.dat
- reflectance.dat
- spectrum_hemis_optical.dat
- spectrum_obsdir_optical.dat
- surftemp.dat
- wl.dat

5.1.1 aerodyn.dat

rows - time (simulation number)

variable	units	description
raa	s m-1	total aerodynamic resistance above canopy
rawc	s m-1	canopy total aerodynamic resistance below canopy
raws	s m-1	soil total aerodynamic resistance below canopy
ustar	m s-1	friction velocity

5.1.2 BOC_irradiance.dat

BOC - bottom of canopy (61st layer)

rows - timestep

First 2162 columns: shaded fraction.

Last 2162 columns: average BOC irradiance.

variable	units	description
Emin_(61, :)	W m-2 um-1	irradiance at the bottom of the canopy for the shaded fraction
Emin_(61, :) +	W m-2 um-1	average BOC irradiance (sunlit + shaded fraction)
Esun_(61, :) *		
gap.Ps(61, :)		

5.1.3 fluxes.dat

rows - time (simulation number)

variable	units	description
timestep	-	time step counter
counter	-	number of iterations in energy balance
year	-	year
Т	-	decimal day of year (DOY)
Rntot	W m-2	total net radiation
lEtot	W m-2	total latent heat flux
Htot	W m-2	total sensible heat
Rnctot	W m-2	net radiation of canopy
lEctot	W m-2	latent heat flux of canopy
Hctot	W m-2	sensible heat of canopy
Actot	umol m-2 s-1	net photosynthesis of canopy
Rnstot	W m-2	net radiation of soil
lEstot	W m-2	latent heat flux of soil
Hstot	W m-2	sensible heat of soil
Gtot	W m-2	soil heat flux
Resp	umol m-2 s-1	soil respiration rate
aPAR_Cab	umol m-2 s-1	absorbed PAR by chlorophylls a, b
aPAR	umol m-2 s-1	absorbed PAR by leaves
fPAR	-	fraction of absorbed PAR by canopy, excluding soil
aPAR_energyunits	W m-2	absorbed PAR
iPAR	W m-2	incident PAR
fluortot	W m-2	hemispherically and spectrally integrated chlorophyll fluorescence
		at the top
fluor_yield	W W-1	Fluortot / aPAR_energyunits

5.1.4 irradiance_spectra.dat

rows - time (simulation number)

columns - wl

variable	units	description
Rin * (fEsuno + fEskvo)	W m-2 um-1	spectrum of incoming radiation used in the simulation

5.1.5 pars_and_input.dat

rows - timestep

columns - all input parameters from input_data.xlxs

5.1.6 pars_and_input_short.dat

rows - timestep

columns-Cab, Vcmo, LAI, hc, zo, d, z, Rin, Ta, Rli, p, ea, u, Ca, tts, SMC

5.1.7 radiation.dat

rows - time (simulation number)

variable	units	description
timestep	-	time step counter
year	-	year
Т	-	decimal day of year (DOY)
ShortIn (Rin)	W m-2	Incoming shortwave radiation (copy from input)
LongIn (Rli)	W m-2	Incoming longwave radiation (copy from input)
HemisOutShort	W m-2	hemispherical outgoing shortwave radiation
(Eouto)		
HemisOutLong	W m-2	hemispherical outgoing longwave radiation
(Eoutt + Eoutte)		
HemisOutTot	W m-2	total hemispherical outgoing radiation
(Eouto + Eoutt +		
Eoutte)		
Net (Rntot)	W m-2	total net radiation

5.1.8 reflectance.dat

rows - time (simulation number)

columns - wl

variable	units	description
Lo_ * pi / (Esun_ +	-	fraction of radiation in observation direction * pi / irradiance
Esky_)		

5.1.9 spectrum_hemis_optical.dat

rows - time (simulation number)

columns - wl number (2162)

variable	units	description
Eout_	W m-2 um-1	hemispherical outgoing radiation spectrum

5.1.10 spectrum_obsdir_optical.dat

rows - time (simulation number)

columns - wl number (2162)

variable	units	description
Lo_	W m-2 um-1 sr-1	radiance spectrum in observation direction

5.1.11 surftemp.dat

rows - time (simulation number)

variable	units	description
timestep	-	time step counter
year	-	year
Т	-	decimal day of year (DOY)
Та	°C	Air temperature above the canopy
Tss(1)	°C	Surface temperature of shaded soil
Tss(2)	°C	Surface temperature of sunlit soil
Tcave	°C	canopy weighted average temperature
Tsave	°C	soil weighted average temperature

5.1.12 wl.dat

single row (2162)

variable	units	description
wl	nm	wavelengths of the spectral output files

5.2 options.calc_ebal & options.calc_planck

Contents

- options.calc_ebal & options.calc_planck
 - spectrum_hemis_thermal.dat
 - spectrum_obsdir_BlackBody.dat
 - spectrum_obsdir_thermal.dat

5.2.1 spectrum_hemis_thermal.dat

Note: options.calc_ebal & options.calc_planck

rows - time (simulation number)

columns - wl number (2162)

variable	units	description
Eoutte_	W m-2 um-1	hemispherical outgoing thermal radiation

5.2.2 spectrum_obsdir_BlackBody.dat

Note: options.calc_ebal

rows - time (simulation number)

columns - wl number (2162)

variable	units	description
LotBB_	W m-2 um-1 sr-1	thermal BlackBody emission spectrum in observation direction

5.2.3 spectrum_obsdir_thermal.dat

Note: options.calc_ebal & options.calc_planck

rows - time (simulation number)

columns - wl number (2162)

variable	units	description
Lot_	W m-2 um-1 sr-1	outgoing thermal radiation in observation direction

5.3 options.calc_vert_profiles

5.3.1 gap.dat

Note: options.calc_vert_profiles

rows - time (simulation number)

columns - [Ps Po Pso] => 61 * 3 columns

variable	units	description
Ps	-	fraction of sunlit leaves per layer
Ро	-	fraction of observed leaves per layer
Pso	-	fraction of sunlit and (at the same time) observed per layer

5.3.2 layer_a.dat

Note: options.calc_vert_profiles & options.calc_ebal

rows - time (simulation number)

columns - photosynthesis per layer, total soil respiration (60 + 1)

variable	units	description
A1d	umol m-2 s-1	mean photosynthesis leaves, per layer
Resp	umol m-2 s-1	soil respiration rate

5.3.3 layer_aPAR.dat

```
Note: options.calc_vert_profiles
```

rows - time (simulation number)

columns - absorbed photosynthetically active radiation (aPAR)

variable	units	description
Pn1d	umol m-2 s-1	aPAR per leaf layer

5.3.4 layer_aPAR_Cab.dat

Note: options.calc_vert_profiles

rows - time (simulation number)

columns - absorbed photosynthetically active radiation (aPAR) by chlorophylls (Cab) per leaf layer

variable	units	description
Pn1d_Cab	umol m-2 s-1	aPAR by Cab per leaf layer

5.3.5 layer_fluorescence.dat

Note: options.calc_vert_profiles & options.calc_fluor

rows - time (simulation number)

columns - upward fluorescence per layer

variable	units	description
fluorescence	W m-2	upward fluorescence per layer

5.3.6 layer_h.dat

Note: options.calc_vert_profiles & options.calc_ebal

rows - time (simulation number)

columns - sensible heat flux per layer, total sensible heat of soil (60 + 1)

variable	units	description
Hc1d	W m-2	mean sensible heat leaves, per layer
Hstot	W m-2	sensible heat of soil

5.3.7 layer_le.dat

Note: options.calc_vert_profiles & options.calc_ebal

rows - time (simulation number)

columns - latent heat flux per layer, total latent heat of soil (60 + 1)

variable	units	description
lEc1d	W m-2	mean latent heat leaves, per layer
lEstot	W m-2	latent heat of soil

5.3.8 layer_NPQ.dat

Note: options.calc_vert_profiles & options.calc_ebal

rows - time (simulation number)

columns - average NPQ = 1-(fm-fo)/(fm0-fo0), per layer (60)

variable	units	description
qE		average NPQ = $1-(fm-fo)/(fm0-fo0)$, per layer

5.3.9 layer_rn.dat

Note: options.calc_vert_profiles & options.calc_ebal

rows - time (simulation number)

columns - net radiation per leaf layer, total net radiation of soil (60 + 1)

variable	units	description
Rn1d	W m-2	net radiation per leaf layer
Rnstot	W m-2	net radiation of soil

5.3.10 leaftemp.dat

Note: options.calc_vert_profiles & options.calc_ebal

rows - time (simulation number)

columns - leaf temperatures per layer (60 * 3) leaf temperature of sunlit leaves, shaded leaves, and weighted average leaf temperature per layer

variable	units	description
Tcu1d	°C	leaf temperature of sunlit leaves, per layer
Tch	°C	leaf temperature of shaded leaves, per layer
Tc1d	°C	weighted average leaf temperature, per layer

5.4 options.calc_fluo

5.4.1 fluorescence.dat

```
Note: options.calc_fluor
```

rows - time (simulation number)

columns - fluorescence from both photosystems in observation direction

variable	units	description
LoF_	W m-2 um-1 sr-1	fluorescence per wavelength in observation direction

5.4.2 fluorescence_emitted_by_all_leaves.dat

Note: options.calc_fluor

rows - time (simulation number)

columns - total emitted fluorescence by all leaves. Within canopy scattering / re-absorption is omitted. Within leaf scattering / re-absorption is taken into account.

variable	units	description
Fem_	W m-2 um-1	hemispherical emitted fluorescence by all leaves

5.4.3 fluorescence_emitted_by_all_photosystems.dat

Note: options.calc_fluor

rows - time (simulation number)

columns - total emitted fluorescence by all photosystems for wavelengths Within canopy scattering / re-absorption is omitted. Within leaf scattering / re-absorption is omitted.

variable	units	description
Femtot	W m-2 um-1	hemispherical emitted fluorescence by all photosystems per wave-
		lengths (excluding leaf and canopy re-absorption and scattering)

5.4.4 fluorescence_hemis.dat

Note: options.calc_fluor

rows - time (simulation number)

columns - top of canopy (TOC) hemispherical fluorescence

variable	units	description
Fhem_	W m-2 um-1	TOC hemispherical fluorescence

5.4.5 fluorescence_scattered.dat

Note: options.calc_fluor

rows - time (simulation number)

columns - top of canopy (TOC) fluorescence contribution from leaves and soil after scattering

variable	units	description
<pre>sum(LoF_scattered)</pre>	W m-2 um-1 sr-1	TOC directional fluorescence from leaves and soil after scattering
+ sum(LoF_soil)		

5.4.6 fluorescence_shaded.dat

rows - time (simulation number)

columns - top of canopy (TOC) fluorescence contribution from shaded leaves in observer direction per wavelengths

variable	units	description
LoF_shaded	W m-2 um-1 sr-1	TOC fluorescence from shaded leaves in observer direction

5.4.7 fluorescence_sunlit.dat

|--|

rows - time (simulation number)

columns - top of canopy (TOC) fluorescence contribution from sunlit leaves in observer direction per wavelengths

variable	units	description
LoF_sunlit	W m-2 um-1 sr-1	TOC fluorescence from sunlit leaves in observer direction

5.4.8 fluorescencePSI.dat

```
Note: options.calc_fluor && options.calc_PSI
```

rows - time (simulation number)

columns - fluorescence of photosystem I (PSI) per wavelength in observation direction

variable	units	description
LoF1_	W m-2 um-1 sr-1	fluorescence of PSI per wavelength in observation direction

5.4.9 fluorescencePSII.dat

```
Note: options.calc_fluor && options.calc_PSI
```

rows - time (simulation number)

columns - fluorescence of photosystem II (PSII) per wavelength in observation direction

variable	units	description
LoF2_	W m-2 um-1 sr-1	fluorescence of PSII per wavelength in observation direction

5.5 options.calc_directional && options.calc_ebal

The output files are stored in folder Directions of your output

Note: This is an optional output that requires options.calc_directional & options.calc_ebal However, the folder will always be created

5.5.1 Directional/Angles (SunAngle x.xx degrees).dat

Contains the directions.

- The 1st row gives the observation zenith angles
- The 2nd row gives the observation azimuth angles
- The 3rd row gives the solar zenith angles (constant from input_data.xlsx)

columns - combination number (a set of direction used for simulation)

Columns in the output files correspond to the columns in Angles

5.5.2 Directional/BRDF (SunAngle x.xx degrees).dat

- The 1st column gives the wl values corresponding to the BRDF values
- Other columns give the BRDF values corresponding to the directions given by observation zenith angles (first column in the Angles file)

variable	units	description
wlS	nm	full wl range SCOPE
brdf_	-	bidirectional reflectance distribution function

5.5.3 Directional/Temperatures (SunAngle x.xx degrees).dat

- The 1st column gives the wl values corresponding to the brightness temperature values (except for broadband)
- Other columns give the brightness temperature (BT) values corresponding to the directions given by a column in the Angles file

variable	units	description		
BrightnessT	К	brightness temperature		
options.				
calc_planck				
wlT	nm	thermal wl range SCOPE		
Lot_	W m-2 um-1 sr-1	outgoing thermal radiation in observation direction		

5.5.4 Directional/Fluorescence (SunAngle x.xx degrees).dat

if options.calc_fluor

- The 1st column gives the wl values corresponding to the brightness temperature values (except for broadband)
- Other columns give the fluorescence corresponding to the directions given by a column in the Angles file

variable	units	description
wlF	nm	fluorescence wl range SCOPE
LoF_	W m-2 um-1 sr-1	outgoing fluorescence radiation in observation direction

5.5.5 Directional/read me.txt

The file with similar explanation

BRIEF HISTORY OF THE MODEL

The SCOPE model has been developed between 2006 and 2009 by Wout Verhof, Joris Timmermans, Christiaan van der Tol, Anne Verhoef and Bob Su. The idea of the model was to develop a simulator for hyperspectral VNIR observations, the surface energy budget and photosynthesis. Chlorophyll fluorescence has been part of the model. It was originally the idea to develop a 3-D radiative transfer scheme, but this idea was (temporally) abandoned, and 1-D remained a 1-D vertical model. This had the advantage that the well-known SAIL model could be used as a basis, which is easily invertible, does not require many parameters, is computationally efficient and sufficient in many cases.

The key elements of the model have been the extension to the thermal domain (Joris Timmermans) and the radiative transfer of fluorescence (Wout Verhoef), the simulation of sensible, latent and ground heat flux, stomatal opening and photosynthesis (Christiaan van der Tol) and an aerodynamic resistance scheme (Anne Verhoef). Model inversion tools are not also available, see for example Van der Tol et al., (2016 [5]). There have been several updates since the published version of the model (version 1.21) in 2009. Other people have contributed to the model development as well, including Ari Kornfeld, Joe Berry, Federico Magnani (mainly the biochemical part, but also other parts), and many users provided useful feedback and suggestions (see *Acknowledgements*).

Model description Van der Tol et al., 2009 [11] Biochemical routine Van der Tol et al., 2014 [10] Leaf radiative transfer scheme Vilfan et al., 2016 [7] Model inversion Van der Tol et al., 2016 [5]

SEVEN

ACKNOWLEDGEMENTS

The development of SCOPE was supported by the Space program of the Netherlands Organization for Scientific Research (NWO), grants NWO-SRON-EO-071 and ALW-GO/13-32, and the European Space Agency (ESA ESTEC ITT AO/1-7088/12/NL/AF "Photosynthesis Study" and ESA RFP IPL-PEO/FF/lf/14.687 "FLEX Bridge Study").

Many users contributed with their feedback and suggestions. Particular thanks to: Ari Kornfeld, Albert Olioso, Jerome Démarty, Federico Magnani, Jose Moreno, Jochem Verrelst, Suvarna Punalekar, Yves Goulas, Marco Celesti, and Georg Wolfahrt.

The module biochemical.m is based on papers by Collatz et et. (1991, 1992 [1][2]), with significant contributions by Joe Berry and Ari Kornfeld. The module biochemical_MD12.m was built by Federico Magnani.

EIGHT

ROADMAP

Documentation for functions will be rendered in a better way. Research output: SCOPE use cases and papers will be added.

NINE

REFERENCES

TEN

VERSION HISTORY

Contents		
• Version history		
- 1.73		
- 1.72		
- 1.71		
- 1.70		
- 1.62		
- 1.61		
- 1.60		
- 1.54		
- 1.53		
- 1.52		
- 1.51		
- 1.40		
- 1.34		
- 1.32		
- 1.21		

10.1 1.73

2019

By Ari Kornfeld

- Add "invalid CO2" error check to ebal
 - Invalid complex-valued CO2 values generated by the energy balance routines were incorrectly attributed to fixed_brent (which is the only module that has its own error-checking). This change assigns "blame" closer to the source of the problem.

- Fixes: An intercept termfor the Ball-Berry equation, BallBerry0, was added to the input files ("input_data.xls"x and "input
 - Setting *BallBerry0* to 0 disables the iterative solver introduced in v1.7.
- Fix bug because Ccu is not a vector (ebal.m)
 - Add more input-checking to biochemical.m, to catch when initial input is bad.
- pass leafbio.BallBerry0 to biochem_in
 - Delete "null" code (assigning a value to biochem_in.A)
 - Allow active warnings when temperatures include NaN. (should be an error, but doesn't propagate to future time steps, so leave as a warning.
- Add gitignore to skip large, rapdily changing files. And gitattributes
- Increase iter.maxit to 400, so ebal converges.
 - 100 is too few for some realistic cases.
 - Note this does not affect Ball-Berry iteration.
 - Also remove clc, which can be a confusing side-effect.

10.2 1.72

2018

- Bug with soil moisture content (SMC) for **BSM()** is solved.
 - SMC range in input is from 0 to 1 (used in calc_rssrbs(), Soil_Inertial())
 - BSM() required SMC in the range from 0 to 100
 - solution: scaling of SMC within *BSM()*: SMC * 100
 - now BSM() accepts SMC from 0 to 1
 - this bug might effect the results if options.soilspectrum == 1
- Misleading comments in filenames were corrected
 - SMC is a one-column file
 - z-file is a two-column table
- input_data_default.xlsx was added with the verification run parameters to make it easier to check that SCOPE still works after you changed something in the code and do not remember the initial configuration of the input_data.xlsx

10.3 1.71

2018

- No changes to output or calculations were done.
- Interactive documentation for ReadTheDocs was created (./docs):
 - code folder was renamed to src for autodocumentation
 - all scripts were transformed to functions for autodocumentation

- functions were grouped into matlab modules (directories starting with + sign), see API
- ./SCOPE_v1.70/readme was deleted

10.4 1.70

2017

- OPTIPAR of PROSPECT-D model used, complemented with Xanthophyll spectra for the Violaxanthin to Zeaxanthin conversion.
- The FLUSPECT model includes dynamic Xanthophyll reflectance due to the de-epoxydation state (the 'PRI effect') and Athocyanins
- A new radiative transfer model, RTMz, simulates the TOC reflectance as a function of the de-epoxydation state induced by light, water or temperature stress.
- The fluorescence emission spectra have been tuned to FluoWat leaf clip measurements. The option to use the fluorescence spectra of V1.62 and older remains.
- The biochemical routine has been updated, and now the internal CO2 concentration in the leaf is calculated iteratively (Ari Kornfeld)
- The BSM model for soil reflectance added as an option.
- SCOPE and SCOPE_mac_linux merged into a single script.
- The option to load the leaf inclination distribution from a file (besides the option to use the LIDFa and LIDFb parameters to simulate the distribution)
- New outputs: The total emitted fluorescence irradiance by all photosystems (i.e. before reabsorption within the leaf and canopy), the total emitted fluorescence irradiance by all leaves accumulated (i.e. before reabsorption by soil and canopy), and the fluorescence originating from sunlit and shaded leaves and the (multiple) scattered flux have been added as separate output files. The bottom of canopy irradiance flux (the flux on the soil) has been added to the output as a spectrum. Several outputs have been added to the 'fluxes' and 'radiation' files, including the incident PAR and the incident radiation.
- Two bugs in the RTMt_Planck have been fixed.

10.5 1.62

2016

• Photosynthesis is a function of aPAR absorbed by Chlorophyll (only) rather than total leaf aPAR as in earlier verions.

10.6 1.61

2015

• Bug in the saving of total evaporation data corrected (bug in versions 1.40 to 1.60). Bug in the loading of time series of roughness length for momentum (zo) and zero plane displacement height (d) calculated from LAI and canopy height was corrected.

10.7 1.60

2015

- Major revision of RTMf: computation speed improved (Ari Kornfeld), scattered fluorescence flux added to the directional flux (Christiaan van der Tol).
- Improved calculation speed of RTMt_sb (AK)
- Revision of Ball-Berry model in biochemical.m: now iterative calculation of Ci and stomatal conductance (AK)
- Minor improvements in the energy balance (soil heat flux computation, suggested by Georg Wolfahrt).
- Input spreadsheet in 'SCOPE' has changed from "input_data.xls" to "input_data.xlsx". Way of reading the sheets 'filenames' and 'options' has changed (AK and CvdT). 'SCOPE' should now also work for MAC and LINUX, but to be sure, SCOPE_mac_linux.m has been maintained.
- Default value of parameter 'fqe' in input spectrum has been tuned to FluoWat measurements

10.8 1.54

2014

• Fluspect replaced by Fluspect_bcar, an updated version of Fluspect with the absorption by carotenoids included, similar to PROSPECT 5

10.9 1.53

2014

• Correction of a bug in Fluspect, which caused the fluorescence spectra to be 2×100 low in version 1.52.

10.10 1.52

2013

• Additional fluorescence output, change in the input data of optipar, and some modification of biochemical_MD12.m. Saves also the path of the code (including SCOPE version) to the output. Bug fixed in Fluspect (a scattering coefficient). Correction for PSI fluorescence moved from RTMf to biochemical.m.

10.11 1.51

2013

• Addition of an alternative leaf level photosynthesis and fluorescence model according to Von Caemmerer (2000) and Magnani et al (2013). Correction of the bug in version 1.40

10.12 1.40

2014

• Major changes in the structure of the model. Coupling with MODTRAN-derived output files. The irradiance spectral input data are now calculated from MODTRAN atmospheric files. The input is specified in a spread-sheet. Variables are organized in structures which makes it easier to plug in new modules. This version has a bug in the unit of the CO2 concentration.

Version 1.40 is no longer available.

10.13 1.34

2012

• Update of FLUSPECT with separate fluorescence spectra for PSI and PSII. Replacing the TVR09 model for fluorescence with an empirical model. Hemispherically integrated fluorescence is added as an output. The photosynthesis model is made consistent with Collatz et al (1991 and 1992), also used in CLM and SiB models, includes C3 and C4 vegetation, and empirically calibrated fluorescence model according to Lee et al. (2013). The possibility to create Look-Up Tables has been introduced, as well as more options for running only parts of the model.

10.14 1.32

2012

• The leaf level optical model FLUSPECT was introduced, which produces leaf reflectance, transmittance and fluorescence spectra. Rather than using given fixed fluorescence matrices as inputs, SCOPE now uses FLUSPECT to calculate the excitation to fluorescence conversion matrices.

10.15 1.21

2009

• The SCOPE model as published in Biogeosciences (2009).

ELEVEN

SUPPORT

For any questions, bugs and collaboration ideas please, create a topic in our SCOPE_model group.

TWELVE

STRUCTS

12.1 input structs

12.1.1 F

Filenames from filenames sheet of input_data.xlsx or filenames.m

The files are located in ../data

Note: This is an array of 22 structs

Initialized

SCOPE.m

Used

variable	user
	SCOPE.m
<pre>soil_file, leaf_file, atmos_file LIDF_file if provided</pre>	
Simulation_Name	create_output_files
other structs from this	<pre>load_timeseries()</pre>

Fields

Fields initialized in SCOPE.m. Each of 22 structs in this array has these fields.

variable	units	type	default	description
FileID	-	char	defined	SCOPE file identifiers
			in	
			SCOPE.	
			m	
FileName	S -	[1 x 1] cell	-	filenames from filenames

12.1.2 angles

Solar and observation zenith and azimuth angles

Initialized

select_input()

Used

variable	user
	calc_brdf()
tts	
tto, psi -> directional_angles	
tto, psi	
	RTMt planck()
	RTMt_sb()
tts, tto, psi	
	RTMf()
	RTMo()
	RTMz()
tts	output_data()

Fields

Fields initialized in select_input() (read from input_data.xlsx)

variable	units	type	default	description
tts	deg	double	30.0	solar zenith angle
tto	deg	double	0.0	observer zenith angle
psi	deg	double	90.0	azimuthal difference between solar and observation angle relative azimuth angle

12.1.3 atmo

Atmospheric transfer functions from standard FLEX atmospheres

Initialized

SCOPE.m loaded from ../data/input/radiationdata and aggregated by aggreg().

Filename is specified on filenames sheet, atmos_file cell of input_data.xlsx

Used

variable	user
M, Ta	RTMo()

Fields

Fields initialized in SCOPE.m

variable	units	type	default	description
Μ	-	[2162 x 6] double	from	atmospheric transmittance functions T1, T3, T4, T5,
			FLEX-S3	_TE ±22; T16
			atm	
Та	°C	double	20.0	air temperature
			(== me-	
			teo.Ta)	

12.1.4 canopy

Canopy parameters, such as leaf area index and leaf inclination distribution function

Initialized

SCOPE.m

select_input()

Variations

canopy.lidf can be read from LIDF_file if its name is provided in the filenames sheet of input_data.xlsx

Note: LIDF_file must be located in /data/input/leafangles (*leafangles*) and have 3 header lines.

canopy.zo, canopy.d may be calculated by zo_and_d() if options.calc_zo is selected canopy.hc may be set in load_timeseries() Warning: never change the angles in *canopy.litab* unless *leafangles()* ('ladgen') is also adapted

Used

variable	user
nlayers, nlincl, nlazi, lidf	meanleaf()
CR, CD1, Psicor, LAI, hc	zo_and_d()
LAI, hc, zo, d	load_timeseries()
LIDFa, LIDFb	leafangles()
	ebal()
nlayers, kV, xl, LAI	
LAI, rwc, zo, d, hc, leafwidth, Cd-> <i>Resist_in</i>	
nlayers, lidf, litab, lazitab, LAI	
	RTMf()
	RTMo()
	RTMt_planck()
	RTMt_sb()
	RTMz()
nlincl, nlazi, x, hot	RTMo()
x, nlayers, LAI	SCOPE.m

Fields

Fields initialized in SCOPE.m

variable	units	type	default	description
nlayers	-	int	60	the number of layers in a canopy
Х	-	[60 x 1] double		
			$(0 \cdot -1)$	levels in canopy except for the top:
				bettom = 1
			spaced	
			vector	top = -1/canopy.nlayers
			vector	in fact length == canopy.nlayers + 1
xl	-	[61 x 1] double		
			[0:-1]	levels in canopy and the top
			equally	[0, canopy.x]
			spaced	in fact length == canopy.nlayers + 1
			vector	
		•	10	
nlincl	-	int	13	number of leaf inclinations
nlazı	-	1nt	36	number of leaf azimuth angles
litab	deg			SAIL lear inclination angles
			[5 : 89]	
			non-	
			equally	
			spaced	
			vector	
logitak		[1 + 26] d		leaf agimuth angles relative to the own
lazitad	-	[1 x 36] double		leaf azimuth angles relative to the sun
			[5 :	
			355]	
			equally	
			spaced	
			vector	
	2	$\begin{bmatrix} 12 & 1 \end{bmatrix}$ double	loofers	Jeaf (talination distribution function
lidf	· ·		rearang	

Fields initialized in select_input() (read from input_data.xlsx)

variable	units	type	default	description
LAI	m2 m-2	double	3.0	Leaf area index
	m	double	2.0	vegetation height
hc				
LIDFa	-	double	-0.35	leaf inclination
LIDFb	-	double	-0.15	variation in leaf inclination
leafwidth	m	double	0.1	leaf width
rb	s m-1	double	10.0	leaf boundary resistance
Cd	?	double	0.3	leaf drag coefficient
CR	?	double	0.35	Verhoef et al. (1997) Drag coefficient for isolated tree
CD1	?	double	20.6	Verhoef et al. (1997) fitting parameter
Psicor	?	double	0.2	Verhoef et al. (1997) Roughness layer correction
rwc	s m-1	double	0.0	within canopy layer resistance
kV	?	double	0.6396	extinction coefficient for Vcmax in the vertical (maxi-
				mum at the top). 0 for uniform Vcmax
	m	double	0.246	roughness length for momentum of the canopy
ZO				
	m	double	1.34	displacement height
d				
hot	?	double	0.05	hotspot parameter canopy.leafwidth /
				canopy.hc

12.1.5 iter

Numerical parameters, such as the number of iterations needed to reach energy balance closure

Initialized

SCOPE.m

Variations

counter is incremented in ebal()

Wc is set to 0.2 if counter > 50 in ebal()

Used

variable	user]
maxit, maxEBer, Wc	ebal()	
counter		
	initialize_output	structures
	output_data()	

Fields

Fields initialized in SCOPE.m

variable	units	type	default	description
maxit	-	int	100	maximum number of iterations
maxEBer	W m-2	double	1.0	maximum accepted error in energy balance
Wc	-	double	1.0	weight coefficient for iterative calculation of Tc
counter	-	int	0	counter, changed in <i>ebal()</i>

12.1.6 leafbio

Leaf biochemical parameters

Initialized

```
select_input()
```

SCOPE.m

Variations

leafbio.Cca may be calculated as 25% of Cab: options.Cca_function_of_Cab

leafbio.fqe may be double (PSII only) or [2 x 1] double (PSI = 0.2 * PSII, PSII) if options.calc_PSI

leafbio.V2Z can be set to 0 with options.calc_PSI

Used

variable	user]
Cab, Cca, V2Z, Cw, Cdm, Cs, Cant, N, fqe		
	<pre>fluspect_B_CX() if options.calc_PSI</pre>	
	fluspect_B_CX_PSI_1	PSII_combine
Type, m, Rdparam, Tyear, beta, qLs, kNPQs, stressfactor,	ebal()	-
Tparam, Vcmo-> <i>biochem_in</i>		
Vcmo, Cab	<pre>load_timeseries()</pre>	
rho_thermal, tau_thermal, fqe	SCOPE.m]

Fields

variable	units	type	default	description	
Cab	ug cm-2	double	80.0	Chlorophyll AB content	
C	ug cm-2	double	20.0	Carotenoid content. Usually 25% of Cab if options.	
Cca				Cca_function_of_Cab	
Cdm	g cm-2	double	0.012	Dry matter content	
Cw	cm	double	0.009	leaf water equivalent layer	
Cs	-	double	0.0	senescent material fraction	
Cant	ug cm-2	double	0.0	Anthocyanins	
N	-	double	1.4	leaf thickness parameters	
Vcmo	umol m-	double	60.0	maximum carboxylation capacity (at optimum tempera-	
	2 s-1			ture)	
m	?	double	8.0	Ball-Berry stomatal conductance parameter	
Туре	-	int => char	0 ('C3')	Photochemical pathway: $0 \Rightarrow C3', 1 \Rightarrow C4'$	
Tparam	°K	[5 x 1] double	[0.2,	See PFT.xls. These are five parameters specifying the	
			0.3,	temperature response.	
			281,		
			308,		
			328]		
9	-	[1 x 1] [2 x 1] dou-	0.01	fluorescence quantum yield efficiency at photosystem	
fqe		ble		level	
Rdparam	-	double	0.015	Respiration = Rdparam * Vcmcax	
rho_therr	nal	double	0.01	broadband thermal reflectance	
tau_thern	nal	double	0.01	broadband thermal transmittance	
Tyear	°C	double	15.0	mean annual temperature	
beta	-	double	0.507	fraction of photons partitioned to PSII (0.507 for C3, 0.4	
				for C4; Yin et al. 2006 [8]; Yin and Struik 2012 [9])	
kNPQs	s-1	double	0.0	rate constant of sustained thermal dissipation (Porcar-	
				Castell 2011 [3])	
qLs	-	double	1.0	fraction of functional reaction centres (Porcar-Castell	
				2011 [3])	
stressfact	0F-	double	1.0	optional input: stress factor to reduce Vcmax (for ex-	
				ample soil moisture, leaf age)	

Fields initialized in select_input() (read from input_data.xlsx)

Fields initialized in SCOPE.m

variable	units	type	default	description	
V2Z	-	double	1.0	violaxantine to zeaxantine ratio. calc_PSI	0 if options.
12.1.7 meteo

Meteorological variables

Initialized

select_input()

Variations

ebal() uses max(meteo.u, 0.2)

Used

variable	user
Ζ	load_timeseries()
	ebal()
Ta, ea, Ca, p u, z -> Resist_in Oa -> biochem_in	
Rin, Rli	RTMo()
Rin, Rli	output_data()

Fields

Fields initialized in select_input() (read from input_data.xlsx)

variable	units	type	default	description
Z	m	double	10.0	measurement height of meteorological data
Rin	W m-2	double	600.0	broadband incoming shortwave radiation (0.4-2.5 um)
Та	°C	double	20.0	air temperature
Rli	W m-2	double	300.0	broadband incoming longwave radiation (2.5-50 um)
р	hPa	double	970.0	air pressure
ea	hPa	double	15.0	atmospheric vapour pressure
u	m s-1	double	2.0	wind speed at height z
Ca	ppm	double	380.0	atmospheric CO2 concentration
Oa	per	double	209.0	atmospheric O2 concentration
	mille			

12.1.8 soil

Soil properties (such as soil moisture, emissivity and the reflectance spectrum)

Initialized

```
select_input()
SCOPE.m
```

Variations

soil.Tsold may be changed by ebal() if options.soil_heat_method < 2 (default case)
soil.rss, soil.rbs may be calculated by calc_rssrbs() if options.calc_rss_rbs is selected
soil.GAM produced by Soil_Inertia0() or Soil_Inertia1() if options.soil_heat_method</pre>

Used

variable	user
spectrum, rs_thermal	SCOPE.m
cs, rhos, lambdas	Soil_Inertia0()
SMC	
	Soil_Inertial()
	BSM()
	calc_rssrbs()
CSSOIL	zo_and_d()
refl	
	RTM£()
	RTMo()
	RTMt_planck()
	RTMt_sb()
	RTMz()
	ebal()
Ts, Tsold, GAM, rss	
rbs $rss \rightarrow Resist in$	

Fields

variable	units	type	default	description
spectrum	-	int	1	spectrum number (column in the database soil_file)
	s m-1	double	500.0	soil resistance for evaporation from the pore space
rss				
rs_therma	al-	double	0.06	broadband soil reflectance in the thermal range 1 -
				emissivity
cs	J kg-1	double	1180.0	specific heat capacity of the soil
	K-1			
rhos	kg m-3	double	1800.0	specific mass of the soil
CSSOIL	?	double	0.01	Drag coefficient for soil Verhoef et al. (1997) (from
				Aerodynamic)
lambdas	J m-1 K-	double	1.55	heat conductivity of the soil
	1			
_	s m-1	double	10.0	soil boundary layer resistance (from Aerodynamic)
rbs				
SMC	-	double	0.25	volumetric soil moisture content in the root zone
BSMBrig	hthess	double	0.5	BSM model parameter for soil brightness
BSMlat	?	double	25.0	BSM model parameter 'lat'
BSMlon	?	double	45.0	BSM model parameter 'long'

Fields initialized in select_input() (read from input_data.xlsx)

Derived variables

variable	units	type	default	description
C I M	?	double	~1814.4	soil thermal inertia
GAM			Soil_Ir	ertia0()

Fields initialized in SCOPE.m

variable	units	type	default	description
Tsold	°C?	[12 x 2] double	20.0	<pre>only if options.soil_heat_method < 2</pre>
refl	-	[2162 x 1] double	[2162 x 1] dou- ble	soil reflectance in fact length == nwl
Ts	°C?	[2 x 1] double	[~15; ~15]	initial soil surface temperature

12.1.9 xyt

Geographical location and time of the project

Initialized

```
select_input() load_timeseries()
```

Variations

SCOPE overwrites xyt.t, xyt.year if options.simulation != 1

Used

variable	user
t, timezn, LON, LAT	load_timeseries()
t	ebal()
t, startDOY, endDOY	SCOPE
year, t	output_data()

Fields

Fields initialized in select_input() (read from input_data.xlsx)

variable	units	type	default	description
startDOY	-	double	169.0	Julian day (decimal) of start of simulations
endDOY	-	double	170.0	Julian day (decimal) of end of simulations
LAT	decimal	double	52.25	Latitude
	deg			
LON	decimal	double	5.69	Longitude
	deg			
timezn	hours	double	1.0	east of Greenwich

Fields initialized in load_timeseries()

variable	units	type	default	description
	-	[n x 1] double	[214 x	Julian day (decimal)
t			1]	
	-	[m x 1] int	[216 x	Calendar year
year			1]	

12.2 constant structs

12.2.1 constants

Physical constants

Initialized

define_constants()

Variations

Used

variable	user
sigmaSB	calc_brdf()
MH2O, Mair, rhoa, cp, g, kappa, sigmaSB	ebal()
kappa	
	zo_and_d()
	resistances()
rhoa, cp, MH2O, R	heatfluxes()
deg2rad, Mair, MCO2, rhoa	load_timeseries()
sigmaSB, C2K	
	Brightness_T()
	RTMt_sb()
deg2rad	
	RTMf()
	RTMz()
	RTMt_planck()
	RTMt_sb()
A, h, c	RTMo()

Fields

Fields initialized in define_constants()

variable	units	type	default	description
Α	mol-1	double	6.02214E	23Constant of Avogadro
h	Js	double	6.6262E-	Planck's constant
			34	
c	m s-1	double	29979245	8 Speed of light
ср	J kg-1	double	1004	Specific heat of dry air
	K-1			
R	J mol-	double	8.314	Molar gas constant
	1K-1			
rhoa	kg m-3	double	1.2047	Specific mass of air
g	m s-2	double	9.81	Gravity acceleration
kappa	-	double	0.4	Von Karman constant
MH2O	g mol-1	double	18	Molecular mass of water
Mair	g mol-1	double	28.96	Molecular mass of dry air
MCO2	g mol-1	double	44	Molecular mass of carbon dioxide
sigmaSB	W m-2	double	5.67E-8	Stefan Boltzman constant
	K-4			
deg2rad	rad	double	pi/180	Conversion from deg to rad
C2K	K	double	273.15	Melting point of water

12.2.2 optipar

Leaf optical parameters: specific absorption coefficients (SAC) of leaf chemical components

Concentration * SAC

Initialized

SCOPE.m: read from fluspect_parameters

Variations

Different files (corresponding to PROSPECT versions) from *fluspect_parameters* can be selected on filenames sheet, leaf_files cell in input_data.xlsx or uncomment lines directly in SCOPE.m (~ 170)

Used

variable	user]
nr, Kdm, Kab, Kw, Ks, Kant Kca (or KcaV, KcaZ)	<pre>fluspect_B_CX() fluspect_B_CX_PSI_1</pre>	PSII_combine
phiI, phiII(ifoptions.calc_PSI) phi	SCOPE.m fluspect_B_CX() if options.calc_PSI SCOPE.m fluspect_B_CX_PSI_1	PSII_combine

Fields

Fields loaded in SCOPE.m

variable	units	type	description
wl	nm	[2001 x 1] double	SAC wavelength range 400-2400
nr	nm-1	[2001 x 1] double	refractive index
Kab	nm-1	[2001 x 1] double	SAC of chlorophylls a + b
Kca	nm-1	[2001 x 1] double	SAC of carotenoids (violaxanthin + zeaxanthin)
Ks	nm-1	[2001 x 1] double	SAC of senescent material
Kw	nm-1	[2001 x 1] double	SAC of water
Kdm	nm-1	[2001 x 1] double	SAC of dry matter
phiI	nm-1	[2001 x 1] double	SAC of PSI
phiII	nm-1	[2001 x 1] double	SAC of PSI
phi	nm-1	[2001 x 1] double	SAC of PSI + PSII
KcaV	nm-1	[2001 x 1] double	SAC of violaxanthin
KcaZ	nm-1	[2001 x 1] double	SAC of zeaxanthin
Kant	nm-1	[2001 x 1] double	SAC of anthocyanins
KcaV2	nm-1	[2001 x 1] double	former SAC of violaxanthin
GSV	nm-1	[2001 x 3] double	Global Soil Vectors spectra
nw	nm-1	[2001 x 1] double	water refraction index spectrum

12.2.3 soilemp

Note: This is an optional struct created for *BSM()* with options.soilspectrum == 1

Initialized

SCOPE.m

Used

variable	user
SMC, film	BSM()

Fields

 $Fields\ initialized\ in\ \texttt{SCOPE.m}$

variable	units	type	default	description
SMC		double	25	soil moisture capacity parameter
film		double	0.015	single water film optical thickness

12.2.4 spectral

Wavelength ranges of MODTRAN, SCOPE, PAR, fluorescence

Initialized

define_bands()

SCOPE.m

Variations

Used

variable	user]
	calc_brdf()	
wlS, wlF, wlT as index		
IwlT		
wlS	ebal()	
wlE, wlF, wlP		
	fluspect_B_CX()	
	fluspect_B_CX_PSI	PSII_combine
wlS	create_output_file	s ()
wlS, wlF	initialize_output_	structures()
wlS, wlT, wlF	output_data()	
wlS, wlF, wlE, IwlF	RTMf()	
wlS, wlP, wlT, wlPAR, IwlP, IwlT	RTMo()	
wlS, wlT, IwlT	RTMt_planck()	
wlS	RTMt_sb()	
wlS, wlZ	RTMz()]
SCOPEspec	aggreg()	1
wlS, wlP, wlT, wlF, IwlP, IwlT, IwlF	SCOPE.m]

Fields

Fields initialized in define_bands()

variable	units	type	default	description
wlS	nm	[1 x 2162] int		SCOPE ranges
			$400 \cdot 1 \cdot$	
			2400	
			2500 :	
			100 :	
			15000	
			16000 :	
			1000 :	
			50000	
wlP	nm	[1 x 2001] int	400:1:	PROSPECT data range
			2400	
wlE	nm	[1 x 351] int	400 : 1 :	excitation in E-F matrix
			750	
wlF	nm	[1 x 211] int	640:1:	chlorophyll fluorescence in E-F matrix
		[1 0001]:	850	
WIO	nm	[1 x 2001] int	400:1:	optical part (== wIP)
wIT		[1 x 161] int	2400	thermal part
WII	11111			thermai part
			2500 :	
			100 :	
			15000	
			16000 :	
			1000 :	
			50000	
17		Γ1 - 1011 ····	500 . 1	south a shall so sion
WIZ	nm		500:1:	xaninopnyii region
wIPA R	nm	[1 x 301] int	400 · 1 ·	DAR range
WILAN	11111		700.1.	I AIX Tange

Fields used by <code>aggreg()</code> to read MODTRAN data <code>spectral.SCOPEspec</code>

variable	units	type		default	description
SCOPEsp	ee.nreg	int		3	number of regions
SCOPEsp	eostart	[1 x	SCOPE-	[400,	number of regions
		spec.nreg] int	2500,	
				16000]	
SCOPEsp	earend	[1 x	SCOPE-	[2400,	number of regions
		spec.nreg] int	15000,	
				50000]	
SCOPEsp	eames	[1 x	SCOPE-	[1, 100,	number of regions
		spec.nreg] int	1000]	

Fields initialized in SCOPE.m

variable	units	type	default	description
IwlP	-	[1 x 2001] int	1:2001	index of wlP in wlS
IwlT	-	[1 x 161] int	2002 :	index of wlT in wlS
			2162	
IwlF	-	[1 x 211] int	241 :	index of wlF in wlS
			451	

12.3 output structs

12.3.1 directional

Note: This is an optional struct that requires options.calc_directional & options.calc_ebal to be output and calculated

Calculated

calc_brdf()

Variations

psi, tto initialized in SCOPE.m are extended in calc_brdf()

options.calc_planck enables Lot_ calculation (disables of Lot and BrightnessT)

options.calc_fluor enables LoF_ calculation

Output file

• Directional/Angles (SunAngle x.xx degrees).dat

Used

variable	user
noa	calc_brdf()

Fields

Fields initialized in SCOPE.m (read from *directional*)

variable	units	type	description
noa	-	double	number of observation angles
psi	deg	[333 x 1] double	observation relative azimuth angles
tto	deg	[333 x 1] double	observation zenith angles

Fields calculated in calc_brdf()

variable	units	type	description
psi	psi deg [364 x 1] double		observation relative azimuth angles
tto	deg	[364 x 1] double	observation zenith angles
brdf_	-	[2162 x 364] double	bidirectional reflectance distribution function
Eoutte		[1 x 364] double	
Lot		[161 x 364] double	
Brightnes	sK	[1 x 364] double	brightness temperature
options	•		
calc_pl	anck		
Lot_	W m-2	[161 x 364] double	outgoing thermal radiation in observation direction
	um-1 sr-		
	1		
options	•		
calc_fluor			
LoF_	W m-2	[211 x 364] double	outgoing fluorescence radiation in observation direction
	um-1 sr-		
	1		

12.3.2 fluxes

Fluxes calculated by the model (turbulent heat exchange, radiation, CO2)

Fields are initialized by initialize_output_structures ()

Calculated

ebal()

Output file

• fluxes.dat

if options.calc_vert_profiles & options.calc_ebal soil fluxes will also be recorded, because soil is the 61st layer.

- leaftemp.dat
- layer_h.dat
- layer_le.dat
- layer_a.dat
- layer_rn.dat

Variations

Various absorbed photosynthetically active radiations (aPAR) can be calculated by <code>ebal()</code> (if <code>options.clc_ebal</code>) or by <code>SCOPE.m</code>

Used

variable	user
aPAR_Cab_eta -> rad.Femtot	SCOPE (if options.
	calc_fluor)
aPAR_Wm2 -> fPAR	output_data()

Fields

Fields calculated in *ebal()*

variable	units	type	description
Rntot	W m-2	double	total net radiation
lEtot	W m-2	double	total latent heat flux
Htot	W m-2	double	total sensible heat
Atot	umol m-	double	total net CO2 uptake (canopy + soil)
	2 s-1		
Rnctot	W m-2	double	net radiation of canopy
lEctot	W m-2	double	latent heat flux of canopy
Hctot	W m-2	double	sensible heat of canopy
Actot	umol m-	double	net photosynthesis of canopy
	2 s-1		
Rnstot	W m-2	double	net radiation of soil
lEstot	W m-2	double	latent heat flux of soil
Hstot	W m-2	double	sensible heat of soil
Gtot	W m-2	double	soil heat flux
Resp	umol m-	double	soil respiration rate
	2 s-1		
Au	umol m-	[13 x 36 x 60] dou-	sunlit leaves net CO2 assimilation
	2 s-1	ble	
Ah	umol m-	[60 x 1] double	shaded leaves net CO2 assimilation
	2 s-1		

Fields added by ebal() (if options.calc_ebal == 1) or by SCOPE.m

variable	units	type	description
aPAR	umol m-	double	absorbed PAR by leaves
	2 s-1		
aPAR_Ca	b umol m-	double	absorbed PAR by chlorophylls a, b
	2 s-1		
aPAR_W	m ℣ m-2	double	absorbed PAR
aPAR_Ca	b<u>u</u>eta l m-	double	green ePAR * relative fluorescence emission efficiency
	2 s-1		

12.3.3 gap

Probabilities of levels being observed, illuminated per layer

Note: This is an optional struct that requires <code>options.calc_vert_profiles</code> to be output, however it will be calculated anyway

Calculated

RTMo()

Output file

 $if \verb"options.calc_vert_profiles"$

gap.dat

Used

variable	user
Ps	
	ebal()
	SCOPE.m
Pso	RTMo()
Ps, Po, Pso	
	RTMf()
	RTMz()
	RTMt_planck()
	RTMt_sb()
K	
	RTMt_planck()
	RTMt_sb()

Fields

Fields initialized in *RTMO()*

variable	units	type	description
Ps	-	[61 x 1] double	fraction of sunlit leaves per layer
Po	-	[61 x 1] double	fraction of observed leaves per layer
Pso	-	[61 x 1] double	fraction of sunlit and (at the same time) observed per
			layer
K	-	double	extinction coefficient in direction of observer integrated
			over leaf angles
k	-	double	extinction coefficient in direction of sun integrated over
			leaf angles

12.3.4 leafopt

Leaf optical properties

Note:

- This output is used, available in the workspace after a SCOPE run but is not written to any output file
- leafoptZ is exactly the same struct calculated by selected version of Fluspect but when all violaxanthin is transformed to zeaxanthin (V2Z == 1)

Calculated

fluspect_B_CX_PSI_PSII_combined()

Variations

fluspect_B_CX() if options.calc_PSI =>

Mb is partitioned to MbI, MbII Mf is partitioned to MfI, MfII

Output file

• not saved

Used

variable	user
refl, tran	
	RTMÉ ()
	RTMo()
	RTMt_planck()
	RTMt_sb()
	RTMz()
Mb, Mf	RTMf()
kChlrel	RTMo()
reflZ, tranZ	RTMz()

Fields

Fields calculated in fluspect_B_CX_PSI_PSII_combined() or fluspect_B_CX() if options. calc_PSI

variable	units	type	description
refl	-	[2162 x 1] double	leaf reflectance
tran	-	[2162 x 1] double	leaf transmittance
kChlrel	-	[2001 x 1] double	
Mb	-	[211 x 351] double	backward scattering fluorescence matrix
Mf	-	[211 x 351] double	forward scattering fluorescence matrix
Mbl_rc	-	[211 x 351] double	backward scattering fluorescence matrix without re-absorption
Mfl_rc	-	[211 x 351] double	forward scattering fluorescence matrix without re-absorption

These values are added from **leafoptZ**, calculated with *leafbio*.V2Z == 1.

variable	units	type	description
reflZ	-	[2162 x 1] double	leaf reflectance with only zeaxanthin
tranZ	-	[2162 x 1] double	leaf transmittance with only zeaxanthin

12.3.5 profiles

Vertical profiles of temperatures and fluxes

Note: This is an optional struct that requires options.calc_vert_profiles to be calculated and output

Calculated

RTMo()

Variations

RTMf() if options.calc_fluor

ebal() if options.calc_ebal

Output file

if options.calc_vert_profiles

- layer_aPAR.dat
- layer_aPAR_Cab.dat

if options.calc_fluor & options.calc_vert_profiles

• layer_fluorescence.dat

 $if \verb"options.calc_ebal & \verb"options.calc_vert_profiles"$

- leaftemp.dat
- layer_h.dat
- layer_le.dat
- layer_a.dat
- layer_NPQ.dat
- layer_rn.dat

Used

variable	user
etah, etau	RTMf()
Knh, Khu	RTMz()

Fields

Fields calculated in *RTMo()* if options.calc_vert_profiles

variable	units	type	description
Pn1d	umol m-	[60 x 1] double	absorbed photosynthetically active radiation (aPAR) per leaf layer
	2 s-1		
Pn1d_Ca	b umol m-	[60 x 1] double	aPAR per leaf layer
	2 s-1		

Fields added in RTMf() if options.calc_fluor

variable	units	type	description
fluorescence m-2		[60 x 1] double	upward fluorescence per layer

Fields added in *ebal()* if options.clc_ebal

Warning: Averaging temperatures is not physically accurate

variable	units	type	description
etah	-	[60 x 1] double	Fs / Fo ratio for shaded leaves
etau	-	[13 x 36 x 60] dou-	Fs / Fo ratio for sunlit leaves
		ble	
Tchave	°C	double	mean temp shaded leaves
Tch	°C	[60 x 1] double	leaf temperature of shaded leaves, per layer
Tcu1d	°C	[60 x 1] double	leaf temperature of sunlit leaves, per layer
Tc1d	°C	[60 x 1] double	weighted average leaf temperature, per layer
Hc1d	W m-2	[60 x 1] double	mean sensible heat leaves, per layer
lEc1d	W m-2	[60 x 1] double	mean latent heat leaves, per layer
A1d	umol m-	[60 x 1] double	mean photosynthesis leaves, per layer
	2 s-1		
Rn1d	W m-2	[60 x 1] double	net radiation per leaf layer
F_Pn1d		[60 x 1] double	mean fluorescence leaves, per layer
qE		[60 x 1] double	average NPQ = $1-(fm-fo)/(fm0-fo0)$, per layer
Knu		[13 x 36 x 60] dou-	NPQ of sunlit leaves
		ble	
Knh		[60 x 1] double	NPQ of shaded leaves

12.3.6 rad

Radiation fluxes: both input (MODTRAN) and output

A large number of radiative fluxes: spectrally distributed and integrated, and canopy radiative transfer coefficients.

```
Fields are initialized by initialize_output_structures ()
```

Calculated

```
RTMo()
RTMf()
RTMt_planck()
RTMt_sb()
ebal()
SCOPE.m
```

Output file

- radiation.dat
- spectrum_obsdir_optical.dat
- spectrum_hemis_optical.dat
- irradiance_spectra.dat
- reflectance.dat
- BOC_irradiance.dat

```
if \verb"options.calc_ebal"
```

• spectrum_obsdir_BlackBody.dat

 $if \verb"options.calc_planck"$

- spectrum_hemis_thermal.dat
- spectrum_obsdir_thermal.dat

 $if \verb"options.calc_fluor"$

- fluorescence.dat
- fluorescencePSI.dat
- fluorescencePSII.dat
- fluorescence_hemis.dat
- fluorescence_emitted_by_all_leaves.dat
- fluorescence_emitted_by_all_photosystems.dat
- fluorescence_sunlit.dat
- fluorescence_shaded.dat
- fluorescence_scattered.dat

Variations

if options.calc_PSI fluorescence (LoF_) is partitioned between photosystems LoF1_, LoF2_

Used

variable	user
Lot LoF_	calc_brdf()
	ebal()
Rnuc, Rnhct, Rnuct, Rnhst, Rnust, Rnhc, Rnuc, Rnhs, Rnus Pnh_Cab, Pnu_Cab <i>-> biochem_in</i> Pnh, Pnu, Pnh_PAR, Pnu_PAR Eoutte	
vb, vf, Esun_, Emin_, Eplu	
	RTMf()
	RTMz()
Pnh, Pnu, Pnh_Cab, Pnu_Cab, Rnh_PAR, Rnu_PAR	SCOPE.m

Fields

Fields initialized in *RTMO* ()

variable	units	type	description
rsd	-	[2162 x 1] double	conical-hemispherical reflectance factor (specular in -> diffuse out)
rdd	-	[2162 x 1] double	bihemispherical reflectance factor (diffuse in -> diffuse out)
rdo	-	[2162 x 1] double	hemispherical-conical reflectance factor (diffuse in -> specular out)
rso	-	[2162 x 1] double	biconical reflectance factor (specular in -> specular out)
vb	-	[2162 x 1] double	directional back scattering coefficient for diffuse incidence
vf	-	[2162 x 1] double	directional forward scattering coefficient for diffuse incidence
Esun_	mW m-	[2162 x 1] double	incident solar spectrum
	2 um-1		
Esky_	mW m-	[2162 x 1] double	incident sky spectrum
	2 um-1		
PAR	mol m-2	double	incident spectrally integrated PAR
	s-1		
fEsuno	-	[2162 x 1] double	fraction of direct light (optical)
fEskyo	-	[2162 x 1] double	fraction of diffuse light (optical)
fEsunt	-	[2162 x 1] double	fraction of direct light (thermal)
fEskyt	-	[2162 x 1] double	fraction of diffuse light (thermal)
Eplu_	mW m-	[61 x 2162] double	upward diffuse radiation in the canopy
	2 um-1		
Emin_	mW m-	[61 x 2162] double	downward diffuse radiation in the canopy
	2 um-1		
Lo_	mW m-	[2162 x 1] double	top of canopy (TOC) radiance in observation direction
	2 um-1		
	sr-1		
Eout_	mW m-	[2162 x 1] double	top of canopy (TOC) upward radiation
	2 um-1		
Eouto	W m-2	double	spectrally integrated upward optical radiation
Eoutt	W m-2	double	spectrally integrated upward thermal radiation

continues on next page

Rnhs	W m-2	double	net radiation of shaded soil
Rnus	W m-2	double	net radiation of sunlit soil
Rnhc	W m-2	[60 x 1] double	net radiation of shaded leaves
Rnuc	W m-2	[13 x 36x 60] dou-	net radiation of sunlit leaves
		ble	
Pnh	mol n-2	[60 x 1] double	net PAR of shaded leaves
	s-1		
Pnu	mol n-2	[13 x 36x 60] dou-	net PAR of sunlit leaves
	s-1	ble	
Pnh_Cab	mol n-2	[60 x 1] double	net PAR absorbed by Cab of shaded leaves
	s-1		
Pnu_Cab	mol n-2	[13 x 36x 60] dou-	net PAR absorbed by Cab of sunlit leaves
	s-1	ble	
Pnh_PAR	W m-2	[60 x 1] double	net PAR of shaded leaves (W m-2)
Pnu_PAR	W m-2	[13 x 36x 60] dou-	net PAR of sunlit leaves (W m-2)
		ble	
Etoto		double	

Table	1	- continued	from	previous	page

Fields initialized in *RTMf* ()

Note: Model simulated fluorescence at 3 levels:

- level of photosystems individually (PSI, PSII) or together
- level of leaves
- level of canopy
 - in observation direction (reaching sensor) (typically starts with Lo)
 - hemispherically integrated

variable	units	type	description
Fem_	W m-2	[211 x 1] double	total emitted fluorescence by all leaves, excluding within canopy
	um-1		scattering / re-absorption
Fhem_	W m-2	[211 x 1] double	TOC hemispherically integrated fluorescence
	um-1		
LoF_	W m-2	[211 x 1] double	fluorescence per wavelength
	um-1 sr-		
	1		
LoF1_	W m-2	[211 x 1] double	fluorescence from photosystem I (PSI) per wavelength
	um-1 sr-		
	1		
LoF2_	W m-2	[211 x 1] double	fluorescence from photosystem II (PSII) per wavelength
	um-1 sr-		
	1		
Fhem_	W m-2	[211 x 1] double	
	um-1		
Fmin_	W m-2	[211 x 61] double	downward fluorescence flux profile
	um-1		
Fplu_	W m-2	[211 x 61] double	upward fluorescence flux profile
	um-1		
LoF_sunl	itW m-2	[211 x 2] double	TOC fluorescence contribution from sunlit leaves in observer direc-
	um-1 sr-		tion per wavelengths
	1		
LoF_shad	lew m-2	[211 x 2] double	TOC fluorescence contribution from shaded leaves in observer di-
	um-1 sr-		rection per wavelengths
	1		
LoF_scat	terred m-2	[211 x 2] double	TOC fluorescence contribution after scattering from leaves
	um-1 sr-		
		[011 0] 1 11	
LOF_SOIL	w m-2	[211 x 2] double	IOC nuorescence contribution after scattering from soil
	um-1 sr-		
E arr4f	I W.m. 2	1	hereighten in the end enceder the integrated TOC floor
E0UU Eminf	W m-2	In a couble	nemispherically and spectrally integrated TOC nuorescence
Emini_	w m-2	[01 X 21] double	
Enluf	Sf-1 W/m 2	[61 x 21] double	
rpini_	w m-2	[01 X 21] double	
	81-1		

Fields initialized in RTMt_planck()

variable	units	type	description
Lot_		double	
Eoutte_		double	
Eplut_		[61 x 1] double	
Emint_		[61 x 1] double	

Fields initialized in *RTMt_sb(*)

variable	units	type	description
Lot		double	
Eoutte		double	
Eplut		[61 x 1] double	
Emint		[61 x 1] double	
Rnuct		[13 x 36 x 60] dou-	
		ble	
Rnhct		[60 x 1] double	
Rnust		double	
Rnhst		double	

Fields added in *ebal()*

variable	units	type	description
LotBB_	W m-2	[2162 x 1] double	blackbody radiance
	sr-1		

Fields added in SCOPE.m

variable	units	type	description
Femtot	W m-2	[211 x 1] double	total emitted fluorescence by all photosystems per wavelengths (ex-
	um-1		cluding leaf and canopy re-absorption and scattering)

12.3.7 thermal

Leaf, soil and air temperatures

Fields are initialized by initialize_output_structures()

Calculated

ebal()

Output file

- surftemp.dat
- aerodyn.dat

Used

variable	user
Tcu, Tch, Ts(1)	
	<pre>calc_brdf() (if options. calc_planck)-> RTMt_planck() calc_brdf() (else)-> RTMt_sb()</pre>
Tcu, Tch, Ts(1), Ts(2)	SCOPE.m (if options.
	calc_planck) ->
	RTMt_planck()

Fields

Fields added in *ebal()*

variable	units	type	description
Tcave	°C	double	canopy weighted average temperature
Tsave	°C	double	soil weighted average temperature
raa	s m-1	double	total aerodynamic resistance above canopy
rawc	s m-1	double	canopy total aerodynamic resistance below canopy
raws	s m-1	double	soil total aerodynamic resistance below canopy
ustar	m s-1	double	friction velocity
Ts	°C	[2 x 1] double	sunlit and shaded soil temperature
Та	°C	double	air temperature as in input
Tcu	°C	[13 x 36 x 60] dou-	sunlit leaves canopy temperature
		ble	
Tch	°C	[60 x 1] double	shaded leaves canopy temperature

12.4 internal structs

This structures are created within functions and can be available in debug mode.

12.4.1 V

Variable names and values.

Note:

- This is an array of 63 structs
- This is a transitional data structure between input_data.xlsx file and input structs

Initialized

assignvarnames() -> Name
SCOPE.m or load_timeseries() -> Val

Used

variable	user
all	select_input()

Fields

Fields initialized in SCOPE.m. Each of 63 structs in this array has these fields.

variable	units	type	default	description
Name	-	char	defined	SCOPE file identifiers
			in	
			SCOPE.	
			m	
Val	correspon	di olg ar	-	values from input_data.xlsx or files in timeseries

12.4.2 biochem_in

Note: This is an internal struct of *ebal()*. It is only available within *ebal()* in debug mode.

Input of the biochemical routine biochemical() or biochemical_MD12() for leaf photosynthesis and fluo-rescence.

Initialized

ebal()

Variations

For sunlit leaves size is [13 x 36 x 60] for shaded [60 x 1]

Fields

Fields initialized in *ebal()*

variable	units	type	description
Fluoresce	nee_model	bool	options.Fluorescence_model
Туре	-	char	photosynthesis type C3 or C4
р	hPa	double	atmospheric pressure
m		double	Ball-Berry stomatal conductance parameter
0	per	double	atmospheric O2 concentration
	mille		
Rdparam	-	double	fraction of respiration
Т	°C		leaf temperature per canopy layer
		[13 x 36 x 60]	
		double	
		$[60 \times 1]$ double	
eh	hPa		leaf water (ea) per canopy layer
•••	in u		iour water (ou) per ouriepy rayer
		[13 x 36 x 60]	
		double	
		[60 x 1] double	
Cs	ppm		leaf CO2 concentration per canopy layer
		[13 x 36 x 60]	
		double	
		[60 x 1] double	
Vcmo	umol m-		maximum carboxylation rate per canopy layer
	2 s-1	[12 x 26 x 60]	
		[15 X 50 X 00]	
		[60 x 1] double	
0	W m-2		absorbed photosynthetically active radiation (PAR) by chlorophylls
V	VV 111-22		ner canopy laver
		[13 x 36 x 60]	
		double	
		[60 x 1] double	
Α	umol m-		photosynthesis (CO2 assimilation rate) per canopy layer
	2 s-1	[13 x 36 x 60]	
		double	
		$[60 \times 1]$ double	

These parameters are specific for *biochemical()*

variable	units	type	description
tempcor	-	double	options.apply_T_corr
Tparams	K	[5 x 1] double	the temperature response of fluorescence
stressfact	0 r	double	stress factor to reduce Vcmax

These parameters are specific for *biochemical_MD12()*

variable	units	type	description
Tyear	°C	double	mean annual temperature
beta	-	double	fraction of photons partitioned to PSII
kNPQs	s-1	double	rate constant of sustained thermal dissipation
qLs	-	double	fraction of functional reaction centres

12.4.3 Biochem_out

Note: This is an internal struct of *ebal()*. It is only available within *ebal()* in debug mode.

Output of the biochemical routine biochemical() or $biochemical_MD12()$ for leaf photosynthesis and fluorescence.

Initialized

ebal()

Variations

For sunlit leaves size is [13 x 36 x 60] for shaded [60 x 1]

Fields

Output specific for *biochemical()*

variable	units	type	description
Α	umol m- 2 s-1	[12 - 26 - 60]	photosynthesis (CO2 assimilation rate) per canopy layer
		double	
		[60 x 1] double	
Ci	ppm		within leaf CO2 concentration per canopy layer
		[13 x 36 x 60] double	
		[60 x 1] double	
eta	-		Fs / Fo
		[13 x 36 x 60]	
		double	
rcw	-		stomatal resistance
		[13 x 36 x 60]	
		double	
		[60 x 1] double	
aE			pop-photochemical quenching $1 - (Em - Eo) / (Em0 - Eo0)$
4L		[12 2((0)	
		[13 x 36 x 60] double	
		$[60 \times 1]$ double	
		[]	
Kn	-		NPQ = (Fm - Fm')/Fm' = Kn/(Kf + Kd)
		[13 x 36 x 60]	
		double	
		[60 x 1] double	

Output specific specific for biochemical_MD12()

variable	units	type	description

12.4.4 Resist_in

Aerodynamic resistance parameters

12.4.5 Resist_out

Aerodynamic resistance state variables

CHAPTER

THIRTEEN

API

13.1 Core

main script SCOPE.m

biochemical (biochem_in, Ci_input)

Date: 21 Sep 2012 Update: 20 Feb 2013 Update: Aug 2013: correction of L171: Ci = Ci*1e6 ./ p .* 1E3; Update: 2016-10 - (JAK) major rewrite to accomodate an iterative solution to the Ball-Berry equation

• also allows for g_m to be specified for C3 plants, but only if Ci_input is provided.

Authors: Joe Berry and Christiaan van der Tol, Ari Kornfeld, contributions of others. Sources:

Farquhar et al. 1980, Collatz et al (1991, 1992).

This function calculates:

- stomatal resistance of a leaf or needle (s m-1)
- photosynthesis of a leaf or needle (umol m-2 s-1)
- fluorescence of a leaf or needle (fraction of fluor. in the dark)

Usage: biochem_out = biochemical(biochem_in) the function was tested for Matlab R2013b

Calculates net assimilation rate A, fluorescence F using biochemical model

Input (units are important): structure 'biochem_in' with the following elements: Knparams % [], [], [] parameters for empirical Kn (NPQ) model: Kn = Kno * $(1+beta).*x.^alpha./(beta + x.^alpha);$

[Kno, Kn_alpha, Kn_beta]

or, better, as individual fields: Kno Kno - the maximum Kn value ("high light") Kn_alpha, Kn_beta alpha, beta: curvature parameters

Cs % [ppmV or umol mol] initial estimate of conc. of CO2 in the ... bounary layer of the leaf

Q % [umol photons m-2 s-1]net radiation, PAR fPAR % [0-1] fraction of incident light that is absorbed by the leaf (default = 1, for compatibility) T % [oC or K] leaf temperature eb % [hPa = mbar] initial estimate of the vapour pressure in leaf boundary layer O % [mmol/mol] concentration of O2 (in the boundary

... layer, but no problem to use ambient)

p % [hPa] air pressure Vcmax25 (Vcmo) % [umol/m2/s] maximum carboxylation capacity @ 25 degC BallBerrySlope (m) % [] Ball-Berry coefficient 'm' for stomatal regulation BallBerry0 % [] (OPTIONAL) Ball-Berry intercept term 'b' (if present, an iterative solution is used)

setting this to zeo disables iteration. Default = 0.01

Type % ['C3', 'C4'] text parameter, either 'C3' for C3 or any ... other text for C4

tempcor % [0, 1] boolean (0 or 1) whether or not ... temperature correction to Vcmax has to be applied.

Tparams % [],[],[K],[K],[K] vector of 5 temperature correction parameters, look in spreadsheet of PFTs. Only if tempcor=1, otherwise use dummy values

...Or replace w/ individual values: slti [] slope of cold temperature decline (C4 only) shti [] slope of high temperature decline in photosynthesis Thl [K] T below which C4 photosynthesis is <= half that predicted by Q10 Thh [K] T above which photosynthesis is <= half that predicted by Q10 Trdm [K] T at which respiration is <= half that predicted by Q10

biochemical_MD12 (biochem_in)

[A,Ci,eta] = biochemical_VCM(Cs,Q,T,eb,O,p,Vcmo,m,Type,Rdparam,stress,Tyear,beta,qLs,NPQs) Date: 21 Sep 2012 Update: 28 Jun 2013 Adaptation for use of Farquhar model of C3 photosynthesis (Farquhar et al 1980)

18 Jul 2013 Inclusion of von Caemmerer model of C4 photosynthesis (von Caemmerer 2000, 2013) 15 Aug 2013 Modified computation of CO2-limited electron transport in C4 species for consistency with light-limited value 22 Oct 2013 Included effect of qLs on Jmax and electron transport; value of kNPQs re-scaled in input as NPQs

Authors: Federico Magnani, with contributions from Christiaan van der Tol

This function calculates:

- CO2 concentration in intercellular spaces (umol/mol == ppmv)
- leaf net photosynthesis (umol/m2/s) of C3 or C4 species
- fluorescence yield of a leaf (fraction of reference fluorescence yield in dark-adapted and un-stressed leaf)

Usage: function [A,Cs,eb,f,rcw] = biochemical(C,Cs,Q,T,ea,eb,O,p,Vcmo,gcparam,Type,tempcor,ra,Tparams,Rdparam,stressfactor the function was tested for Matlab 7.2.0.232 (R2006a)

Input (units are important; when not otherwise specified, mol refers to mol C): Cs % [umol/mol] CO2 concentration at leaf surface Q % [uE/m2/s] photochemically active radiation absorbed by the leaf T % [oC or K] leaf temperature eb % [hPa] vapour pressure in leaf boundary layer O % [mmol/mol] ambient O2 concentration p % [Pa] air pressure Vcmo % [umol/m2/s] maximum carboxylation capacity m % [mol/mol] Ball-Berry coefficient 'm' for stomatal regulation Type % [] text parameter, either 'C3' for C3 or any other text for C4 Rdparam % [mol/mol] respiration at reference temperature as fraction of Vcmax stress % [] optional input: stress factor to reduce Vcmax (for example soil moisture, leaf age). Default value = 1 (no stress). Tyear % [oC] mean annual temperature beta % [] fraction of photons partitioned to PSII (0.507 for C3, 0.4 for C4; Yin et al. 2006; Yin and Struik 2012) qLs % [] fraction of functional reaction centres (Porcar-Castell 2011) NPQs % [s-1] rate constant of sustained thermal dissipation, normalized to (kf+kD) (=kNPQs'; Porcar-Castell 2011)

Note: always use the prescribed units. Temperature can be either oC or K Note: input can be single numbers, vectors, or n-dimensional matrices Note: For consistency reasons, in C4 photosynthesis electron transport rates under CO2-limited conditions are computed by inverting the equation

applied for light-limited conditions(Ubierna et al 2013). A discontinuity would result when computing J from ATP requirements of Vp and Vco, as a fixed electron transport partitioning is assumed for light-limited conditions

```
BSM (soilpar, spec, emp)
Spectral parameters
```

calc_brdf (options, directional, spectral, angles, rad, atmo, soil, leafopt, canopy, meteo, profiles, thermal)

ebal (*iter*, *options*, *spectral*, *rad*, *gap*, *leafopt*, *angles*, *meteo*, *soil*, *canopy*, *leafbio*, *xyt*, *k*, *profiles*) function ebal.m calculates the energy balance of a vegetated surface

authors: Christiaan van der Tol (tol@itc.nl) Joris Timmermans (j_timmermans@itc.nl)

date 26 Nov 2007 (CvdT) updates 29 Jan 2008 (JT & CvdT) converted into a function

11 Feb 2008 (JT & CvdT) improved soil heat flux and temperature calculation 14 Feb 2008 (JT) changed h in to hc (as h=Avogadro's constant) 31 Jul 2008 (CvdT) Included Pntot in output 19 Sep 2008 (CvdT) Converted F0 and F1 from units per aPAR into units per iPAR 07 Nov 2008 (CvdT) Changed layout 18 Sep 2012 (CvdT) Changed Oc, Cc, ec

Feb 2012 (WV) introduced structures for variables Sep 2013 (JV, CvT) introduced additional biochemical model

parent: master.m (script) uses:

RTMt_sb.m, RTMt_planck.m (optional), RTMf.m (optional) resistances.m heatfluxes.m biochemical.m soil_respiration.m

Table of contents of the function

- 1. Initialisations for the iteration loop intial values are attributed to variables
- 2. Energy balance iteration loop iteration between thermal RTM and surface fluxes
- 3. Write warnings whenever the energy balance did not close
- 4. Calculate vertical profiles (optional)
- 5. Calculate spectrally integrated energy, water and CO2 fluxes

The energy balance iteration loop works as follows:

RTMo More or less the classic SAIL model for Radiative Transfer of sun and sky light (no emission by the vegetation)

While continue Here an iteration loop starts to close the energy

balance, i.e. to match the micro-meteorological model and the radiative transfer model

- **RTMt_sb A numerical Radiative Transfer Model for thermal** radiation emitted by the vegetation
- **resistances Calculates aerodynamic and boundary layer resistances** of vegetation and soil (the micro-meteorological model)
- **biochemical Calculates photosynthesis, fluorescence and stomatal** resistance of leaves (or biochemical_MD12: alternative)
- heatfluxes Calculates sensible and latent heat flux of soil and vegetation Next soil heat flux is calculated, the energy balance is evaluated, and soil and leaf temperatures adjusted to force energy balance closure

end {while continue}

meanleaf Integrates the fluxes over all leaf inclinations azimuth angles and layers, integrates over the spectrum

usage:

[iter,fluxes,rad,profiles,thermal] ...

= ebal(iter,options,spectral,rad,gap,leafopt, ... angles,meteo,soil,canopy,leafbio)

The input and output are structures. These structures are further specified in a readme file.

Input:

iter numerical parameters used in the iteration for energy balance closure options calculation options spectral spectral resolutions and wavelengths rad incident radiation gap probabilities of direct light penetration and viewing leafopt leaf optical properties angles viewing and observation angles soil soil properties canopy canopy properties leafbio leaf biochemical parameters

Output:

iter numerical parameters used in the iteration for energy balance closure fluxes energy balance, turbulent, and CO2 fluxes rad radiation spectra profiles vertical profiles of fluxes thermal temperatures, aerodynamic resistances and friction velocity

fluspect_B_CX (spectral, leafbio, optipar)

function [leafopt] = fluspect(spectral,leafbio,optipar) calculates reflectance and transmittance spectra of a leaf using FLUSPECT, plus four excitation-fluorescence matrices

Authors: Wout Verhoef, Christiaan van der Tol (tol@itc.nl), Joris Timmermans, Date: 2007 Update from PROSPECT to FLUSPECT: January 2011 (CvdT)

Nov 2012 (CvdT) Output EF-matrices separately for PSI and PSII

31 Jan 2013 (WV) Adapt to SCOPE v_1.40, using structures for I/O 30 May 2013 (WV) Repair bug in s for non-conservative scattering 24 Nov 2013 (WV) Simplified doubling routine 25 Nov 2013 (WV) Restored piece of code that takes final refl and

tran outputs as a basis for the doubling routine

- **03 Dec 2013 (WV) Major upgrade. Border interfaces are removed before** the fluorescence calculation and later added again
- **23 Dec 2013 (WV) Correct a problem with N = 1 when calculating k** and s; a test on a = Inf was included

01 Apr 2014 (WV) Add carotenoid concentration (Cca and Kca) 19 Jan 2015 (WV) First beta version for simulation of PRI effect 17 Mar 2017 (CT) Added Anthocyanins (following Prospect-D)

usage: [leafopt] = fluspect_b(spectral,leafbio,optipar)

inputs: Cab = leafbio.Cab; Cca = leafbio.Cca; V2Z = leafbio.V2Z; % Violaxanthin - Zeaxanthin transition status

[0-1]

Cw = leafbio.Cw; Cdm = leafbio.Cdm; Cs = leafbio.Cs; Cant = leafbio.Cant; N = leafbio.N; fqe = leafbio.fqe;

nr = optipar.nr; Kdm = optipar.Kdm; Kab = optipar.Kab; Kca = optipar.Kca; KcaV = optipar.KcaV; KcaZ = optipar.KcaZ; Kw = optipar.Kw; Ks = optipar.Ks; phiI = optipar.phiI; phiII = optipar.phiII;

outputs: refl reflectance tran transmittance Mb backward scattering fluorescence matrix, I for PSI and II for PSII Mf forward scattering fluorescence matrix, I for PSI and II for PSII

fluspect_B_CX_PSI_PSII_combined (spectral, leafbio, optipar)

function [leafopt] = fluspect(spectral,leafbio,optipar) calculates reflectance and transmittance spectra of a leaf using FLUSPECT, plus four excitation-fluorescence matrices

Authors: Wout Verhoef, Christiaan van der Tol (tol@itc.nl), Joris Timmermans, Date: 2007 Update from PROSPECT to FLUSPECT: January 2011 (CvdT)

Nov 2012 (CvdT) Output EF-matrices separately for PSI and PSII

31 Jan 2013 (WV) Adapt to SCOPE v_1.40, using structures for I/O 30 May 2013 (WV) Repair bug in s for non-conservative scattering 24 Nov 2013 (WV) Simplified doubling routine 25 Nov 2013 (WV) Restored piece of code that takes final refl and

tran outputs as a basis for the doubling routine

- **03 Dec 2013 (WV) Major upgrade. Border interfaces are removed before** the fluorescence calculation and later added again
- **23 Dec 2013 (WV) Correct a problem with N = 1 when calculating k** and s; a test on a = Inf was included

01 Apr 2014 (WV) Add carotenoid concentration (Cca and Kca) 19 Jan 2015 (WV) First beta version for simulation of PRI effect 17 Mar 2017 (CT) Added Anthocyanins according to Prospect-D

usage: [leafopt] = fluspect_b(spectral,leafbio,optipar)

inputs: Cab = leafbio.Cab; Cca = leafbio.Cca; V2Z = leafbio.V2Z; % Violaxanthin - Zeaxanthin transition status

[0-1]

Cw = leafbio.Cw; Cdm = leafbio.Cdm; Cs = leafbio.Cs; Cant = leafbio.Cant; N = leafbio.N; fqe = leafbio.fqe;

nr = optipar.nr; Kdm = optipar.Kdm; Kab = optipar.Kab; Kca = optipar.Kca; KcaV = optipar.KcaV; KcaZ = optipar.KcaZ; Kw = optipar.Kw; Ks = optipar.Ks; phi = optipar.phi; outputs: refl reflectance tran transmittance Mb backward scattering fluorescence matrix, I for PSI and II for PSII Mf forward scattering fluorescence matrix, I for PSI and II for PSII Mf forward scattering fluorescence matrix, I for PSI and II for PSII

heatfluxes (ra, rs, Tc, ea, Ta, e_to_q, PSI, Ca, Ci)

resistances (resist_in)

function resistances calculates aerodynamic and boundary resistances for soil and vegetation

Date: 01 Feb 2008 Authors: Anne Verhoef (a.verhoef@reading.ac.uk)

Christiaan van der Tol (tol@itc.nl) Joris Timmermans (j_timmermans@itc.nl)

Source: Wallace and Verhoef (2000) 'Modelling interactions in mixed-plant communities: light, water and carbon dioxide', in: Bruce Marshall, Jeremy A. Roberts (ed), 'Leaf Development and Canopy Growth', Sheffield Academic Press, UK. ISBN 0849397693

ustar: Tennekes, H. (1973) 'The logaritmic wind profile', J. Atmospheric Science, 30, 234-238 Psih: Paulson, C.A. (1970), The mathematical representation of wind speed and temperature in the unstable atmospheric surface layer. J. Applied Meteorol. 9, 857-861

Note: Equation numbers refer to equation numbers in Wallace and Verhoef (2000)

Usage: [resist_out] = resistances(resist_in)

The input and output are structures. These structures are further specified in a readme file.

Input: resist_in aerodynamic resistance parameters and wind speed

The strucutre resist_in contains the following elements: u = windspeed L = stability LAI = Leaf Area Index

RTMf (*spectral*, *rad*, *soil*, *leafopt*, *canopy*, *gap*, *angles*, *profiles*)

function 'RTMf' calculates the spectrum of fluorescent radiance in the observer's direction in addition to the total TOC spectral hemispherical upward Fs flux

Authors: Wout Verhoef and Christiaan van der Tol (c.vandertol@utwente.nl) Date: 12 Dec 2007 Update: 26 Aug 2008 CvdT Small correction to matrices

07 Nov 2008 CvdT Changed layout

Update: 19 Mar 2009 CvdT Major corrections: lines 95-96, 101-107, and 119-120.

Update: 7 Apr 2009 WV & CvdT Major correction: lines 89-90, azimuth dependence was not there in previous verions (implicit assumption of azimuth(solar-viewing) = 0). This has been corrected

Update: May-June 2012 WV & CvdT Add calculation of hemispherical Fs fluxes

Update: Jan-Feb 2013 WV Inputs and outputs via structures for SCOPE Version 1.40

Update: Jan 2015 CvdT Added two contributions to SIF radiance cuased by rescattering of hemispherical SIF fluxes Update: Jan 2015 JAK (from SCOPE 1.53): Improved speed by factor of 9+! (by vectorizing the summation over the 60 layers) Update: Jan 2015 WV Rearranged some arrays to smoothen the vectorizations; adjusted some internal names

The inputs and outputs are structures. These structures are further specified in a readme file.

Input: spectral information about wavelengths and resolutions rad a large number of radiative fluxes: spectrally distributed

and integrated, and canopy radiative transfer coefficients.

soil soil properties leafopt leaf optical properties canopy canopy properties (such as LAI and height) gap probabilities of direct light penetration and viewing angles viewing and observation angles profiles vertical profiles of fluxes

Output:

rad a large number of radiative fluxes: spectrally distributed and integrated, and canopy radiative transfer coefficients. Here, fluorescence fluxes are added

0.0 globals

RTMo (spectral, atmo, soil, leafopt, canopy, angles, meteo, rad, options)

function RTMo

calculates the spectra of hemisperical and directional observed visible and thermal radiation (fluxes E and radiances L), as well as the single and bi-directional gap probabilities

the function does not require any non-standard Matlab functions. No changes to the code have to be made to operate the function for a particular canopy. All necessary parameters and variables are input or global and need to be specified elsewhere.

Authors: Wout Verhoef (verhoef@nlr.nl) Christiaan van der Tol (tol@itc.nl) Joris Timmermans (j_timmermans@itc.nl)

updates: 10 Sep 2007 (CvdT) - calculation of Rn

5 Nov 2007 - included observation direction

12 Nov 2007 - included abs. PAR spectrum output

· improved calculation efficiency

13 Nov 2007 - written readme lines 11 Feb 2008 (WV&JT) - changed Volscat

(JT) - small change in calculation Po,Ps,Pso

- introduced parameter 'lazitab'
- changed nomenclature
- Appendix IV: cosine rule

04 Aug 2008 (JT) - Corrections for Hotspot effect in the probabilities 05 Nov 2008 (CvdT) - Changed layout 04 Jan 2011 (JT & CvdT) - Included Pso function (Appendix IV)

• removed the analytical function (for checking)

02 Oct 2012 (CvdT) - included incident PAR in output
Jan/Feb 2013 (WV) - Major revision towards SCOPE version 1.40:

- Parameters passed using structures
- Improved interface with MODTRAN atmospheric data
- Now also calculates 4-stream reflectances rso, rdo, rsd and rdd analytically

Apri 2013 (CvT) - improvements in variable names and descriptions

Table of contents of the function

- 0. Preparations
 - 0.1 parameters 0.2 initialisations
- 1. Geometric quantities

1.1 general geometric quantities 1.2 geometric factors associated with extinction and scattering 1.3 geometric factors to be used later with rho and tau 1.4 solar irradiance factor for all leaf orientations 1.5 probabilities Ps, Po, Pso

- 2. Calculation of upward and downward fluxes
- 3. Outgoing fluxes, hemispherical and in viewing direction, spectrum

4. Net fluxes, spectral and total, and incoming fluxes A1 functions J1 and J2 (introduced for stable solutions) A2 function volscat A3 function e2phot A4 function Pso

references:

- **{1} Verhoef (1998), 'Theory of radiative transfer models applied in** optical remote sensing of vegetation canopies'. PhD Thesis Univ. Wageninegn
- {2} Verhoef, W., Jia, L., Xiao, Q. and Su, Z. (2007) Unified optical thermal four stream radiative transfer theory for homogeneous vegetation canopies. IEEE Transactions on geoscience and remote sensing, 45,6.

{3} Verhoef (1985), 'Earth Observation Modeling based on Layer Scattering

Matrices', Remote sensing of Environment, 17:167-175

Usage: function [rad,gap,profiles] = RTMo(spectral,atmo,soil,leafopt,canopy,angles,meteo,rad,options)

The input and output are structures. These structures are further specified in a readme file.

Input: spectral information about wavelengths and resolutions atmo MODTRAN atmospheric parameters soil soil properties leafopt leaf optical properties canopy canopy properties (such as LAI and height) angles viewing and observation angles meteo has the meteorological variables. Is only used to correct

the total irradiance if a specific value is provided instead of the usual Modtran output.

rad initialization of the structure of the output 'rad' options simulation options. Here, the option

'calc_vert_profiles' is used, a boolean that tells whether or not to output data of 60 layers separately.

Output: gap probabilities of direct light penetration and viewing rad a large number of radiative fluxes: spectrally distributed

and integrated, and canopy radiative transfer coefficients.

profiles vertical profiles of radiation variables such as absorbed PAR.

RTMt_planck (*spectral, rad, soil, leafopt, canopy, gap, angles, Tcu, Tch, Tsu, Tsh, obsdir*) function 'RTMt_planck' calculates the spectrum of outgoing thermal radiation in hemispherical and viewing direction

Authors: Wout Verhoef and Christiaan van der Tol (tol@itc.nl) Date: 5 November 2007 Update: 14 Nov 2007

16 Nov 2007 CvdT improved calculation of net radiation 17 Dec 2007 JT simplified, removed net radiation 07 Nov 2008 CvdT changed layout 16 Mar 2009 CvdT removed calculation of Tbright 12 Apr 2013 CvdT introduced structures

Table of contents of the function:

0. preparations

0.0 globals 0.1 initialisations 0.2 parameters 0.3 geometric factors of Observer 0.4 geometric factors associated with extinction and scattering 0.5 geometric factors to be used later with rho and tau 0.6 fo for all leaf angle/azumith classes

1 calculation of upward and downward fluxes 2 outgoing fluxes, hemispherical and in viewing direction A1 function planck (external function is now used)

Usage: function rad = RTMt_planck(spectral,rad,soil,leafopt,canopy,gap,angles,Tcu,Tch,Tsu,Tsh,obsdir)

- **Input:** Symbol Description Unit Dimension — — Tcu temperature sunlit leaves C [13,36,nl] Tch temperature shaded leaves C [nl] Tsu temperature sunlit soil C [1] Tsu temperature shaded soil C [1] rad a structure containing soil a structure containing soil reflectance canopy a structure containing LAI and leaf inclination
- **RTMz** (spectral, rad, soil, leafopt, canopy, gap, angles, profiles)

function 'RTMz' calculates the small modification of TOC outgoing radiance due to the conversion of Violaxanthin into Zeaxanthin in leaves

Author: Christiaan van der Tol (c.vandertol@utwente.nl) Date: 08 Dec 2016

The inputs and outputs are structures. These structures are further specified in a readme file.

Input: spectral information about wavelengths and resolutions rad a large number of radiative fluxes: spectrally distributed

and integrated, and canopy radiative transfer coefficients.

soil soil properties leafopt leaf optical properties canopy canopy properties (such as LAI and height) gap probabilities of direct light penetration and viewing angles viewing and observation angles profiles vertical profiles of fluxes

Output:

rad a large number of radiative fluxes: spectrally distributed and integrated, and canopy radiative transfer coefficients. Here, fluorescence fluxes are added

0.0 globals

RTMt_sb (spectral, rad, soil, leafopt, canopy, gap, angles, Tcu, Tch, Tsu, Tsh, obsdir)

function 'RTMt_sb' calculates total outgoing radiation in hemispherical direction and total absorbed radiation per leaf and soil component. Radiation is integrated over the whole thermal spectrum with Stefan-Boltzman's equation. This function is a simplified version of 'RTMt_planck', and is less time consuming since it does not do the calculation for each wavelength separately.

Authors: Wout Verhoef and Christiaan van der Tol (tol@itc.nl) date: 5 Nov 2007 update: 13 Nov 2007

16 Nov 2007 CvdT improved calculation of net radiation 27 Mar 2008 JT added directional calculation of radiation 24 Apr 2008 JT Introduced dx as thickness of layer (see parameters) 31 Oct 2008 JT introduced optional directional calculation 31 Oct 2008 JT changed initialisation of F1 and F2 -> zeros 07 Nov 2008 CvdT changed layout 16 Mar 2009 CvdT removed Tbright calculation

Feb 2013 WV introduces structures for version 1.40

Table of contents of the function

0 preparations 0.0 globals 0.1 initialisations 0.2 parameters 0.3 geometric factors of Observer 0.4 geometric factors associated with extinction and scattering 0.5 geometric factors to be used later with rho and tau 0.6 fo for all leaf angle/azumith classes

1 calculation of upward and downward fluxes 2 total net fluxes Appendix A. Stefan-Boltzmann

usage: [rad] = RTMt_sb(options, spectral, rad, soil, leafopt, canopy, gap, angles, Tcu, Tch, Tsu, Tsh)

Most input and output are structures. These structures are further specified in a readme file. The temperatures Tcu, Tch, Tsu and Tsh are variables.

Input: options calculation options spectral information about wavelengths and resolutions rad a large number of radiative fluxes: spectrally distributed

and integrated, and canopy radiative transfer coefficients

soil soil properties leafopt leaf optical properties canopy canopy properties (such as LAI and height) gap probabilities of direct light penetration and viewing angles viewing and observation angles Tcu Temperature of sunlit leaves (oC), [13x36x60] Tch Temperature of shaded leaves (oC), [13x36x60] Tsu Temperature of sunlit soil (oC), [1] Tsh Temperature of shaded soil (oC), [1]

Output:

rad a large number of radiative fluxes: spectrally distributed and integrated, and canopy radiative transfer coefficients. Here, thermal fluxes are added

0.0 globals

13.2 +equations

The following modules contain physical or empirical equations used in the model

calc_rssrbs (SMC, LAI, rbs)

calczenithangle (*Doy*, *t*, *Omega_g*, *Fi_gm*, *Long*, *Lat*)

author: Christiaan van der Tol (c.vandertol@utwente.nl) date: Jan 2003 update: Oct 2008 by Joris Timmermans (j_timmermans@itc.nl):

corrected equation of time

Oct 2012 (CvdT) comment: input time is GMT, not local time!

function [Fi_s,Fi_gs,Fi_g]= calczenithangle(Doy,t,Omega_g,Fi_gm,Long,Lat)

calculates pi/2-the angle of the sun with the slope of the surface.

input: Doy day of the year t time of the day (hours, GMT) Omega_g slope azimuth angle (deg) Fi_gm slope of the surface (deg) Long Longitude (decimal) Lat Latitude (decimal)

output: Fi_s 'classic' zenith angle: perpendicular to horizontal plane Fi_gs solar angle perpendicular to surface slope Fi_g projected slope of the surface in the plane through the solar beam and the vertical

fixedp_brent_ari (func, x0, corner, tolFn, verbose)

Find a fixed point of func(x) using Brent's method, as described by Brent 1971

func is a single-argument function, f(x) that returns a value the same size as x: The goal is to find f(x) = x (or for Brent, f(x) - x = 0).

x0 is the initial guess (or 2 x n matrix if we want to generalize) tol is the tolerance in x (or if two-valued, x, f(x)?) corner (optional) is a known "edge" in the function that could slow down the algorithm

if specified and the first two points include the corner, the corner will be substituted as a starting point.

Written by: Ari Kornfeld, 2016-10

leafangles(a, b)

Subroutine FluorSail_dladgen Version 2.3 For more information look to page 128 of "theory of radiative transfer models applied in optical remote sensing of vegetation canopies"

FluorSail for Matlab FluorSail is created by Wout Verhoef, National Aerospace Laboratory (NLR) Present e-mail: w.verhoef@utwente.nl

This code was created by Joris Timmermans, International institute for Geo-Information Science and Earth Observation. (ITC) Email: j.timmermans@utwente.nl

main function

meanleaf(canopy, F, choice, Ps)

Planck (wl, Tb, em)

satvap(T)

function [es,s]= satvap(T) Author: Dr. ir. Christiaan van der Tol Date: 2003

calculates the saturated vapour pressure at temperature T (degrees C) and the derivative of es to temperature s (kPa/C) the output is in mbar or hPa. The approximation formula that is used is: $es(T) = es(0)*10^{(aT/(b+T))}$; where es(0) = 6.107 mb, a = 7.5 and b = 237.3 degrees C and $s(T) = es(T)*ln(10)*a*b/(b+T)^2$

Soil_Inertia0 (cs, rhos, lambdas)

soil thermal inertia

```
Soil_Inertial (SMC)
soil inertia method by Murray and Verhoef (
```

soil_respiration(Ts)

Warning: function soil_respiration always returns 0 no matter what the input is

tav(alfa, nr)

```
zo_and_d (soil, canopy)
```

function zom_and_d calculates roughness length for momentum and zero plane displacement from vegetation height and LAI

Date: 17 November 2008 17 April 2013 (structures)

Author: A. Verhoef implemented into Matlab by C. van der Tol (c.vandertol@utwente.nl)

Source: Verhoef, McNaughton & Jacobs (1997), HESS 1, 81-91

usage: zo_and_d (soil,canopy)

canopy fields used as inpuyt: LAI one sided leaf area index hc vegetation height (m)

soil fields used: Cd Averaged drag coefficient for the vegetation CR Drag coefficient for isolated tree CSSOIL Drag coefficient for soil CD1 Fitting parameter Psicor Roughness layer correction

constants used (as global) kappa Von Karman's constant

output: zom roughness lenght for momentum (m) d zero plane displacement (m)

13.3 +helpers

Functions that are based on well-known equations: integration etc.

```
aggreg(atmfile, SCOPEspec)
```

Aggregate MODTRAN data over SCOPE bands by averaging (over rectangular band passes)

```
count (nvars, v, vmax, id)
```

nvars = number of digits v = current vector of digits vmax = maximum values of digits id = starting digit vnew = new vector of digits

Sint (y, x)

Simpson integration x and y must be any vectors (rows, columns), but of the same length x must be a monotonically increasing series

13.4 +io (input output)

This is a Matlab module => the folder starts with the '+' sign and it should not be changed.

```
define_constants()
```

```
readStructFromExcel (filename, sheetName, headerIdx, dataIdx, data_is_char, data_in_rows)
```

Read data into a struct with names matching those found in the first column/row default is for data to be in columns (A and B); if data_in_rows = true, data are in rows 1 & 2 example:

readStructFromExcel('../input_data.xlsx', 'options', 3, 1) readStructFromExcel('../input_data.xlsx', 'filenames', 1, 2, true)

assignvarnames()

define_bands()

Define spectral regions for SCOPE v_1.40 All spectral regions are defined here as row vectors WV Jan. 2013

```
select_input (V, vi, canopy, options, xyt, soil)
```

load_timeseries (V, leafbio, soil, canopy, meteo, constants, F, xyt, path_input, options)

```
initialize_output_structures (spectral)
```

```
create_output_files (parameter_file, F, path_of_code, options, V, vmax, spectral)
```

Create DATA files author J.timmermans last modified 4 Aug 2008: Added the creation of log file (file with input parameters)

4 Aug 2008: j.timmermans: included variable output directories

31 Jul 2008: (CvdT) added layer_pn.dat 19 Sep 2008: (CvdT) added spectrum.dat 16 Apr 2009: (CvdT) added layer_rn.dat 18 Nov 2013: (CvdT) several updates.

```
output_data (Output_dir, options, k, iter, xyt, fluxes, rad, thermal, gap, meteo, spectral, V, vi, vmax, profiles, directional, angles)
```

OUTPUT DATA author C. Van der Tol modified: 31 Jun 2008: (CvdT) included Pntot in output fluxes.dat last modified: 04 Aug 2008: (JT) included variable output directories

31 Jul 2008: (CvdT) added layer_pn.dat 19 Sep 2008: (CvdT) spectrum of outgoing radiation 19 Sep 2008: (CvdT) Pntot added to fluxes.dat 15 Apr 2009: (CvdT) Rn added to vertical profiles 03 Oct 2012: (CvdT) included boolean variabel calcebal 04 Oct 2012: (CvdT) included reflectance and fPAR 10 Mar 2013: (CvdT) major revision: introduced structures 22 Nov 2013: (CvdT) added additional outputs

Standard output

output_verification(Output_dir)

Date: 07 August 2012 Author: Christiaan van der Tol (tol@itc.nl) output_verification.m (script) checks if the output of the latest run with SCOPE_v1.51 matches with a 'standard' output located in a directory called 'verificationdata'. If it does not, warnings will appear in the Matlab command window. The following is tested:

- does the number of output files match?
- does the size of the files match (number of bytes)?
- are all files that are in the verification dataset present with the

same file names? - is the content of the files exactly the same?

If the output is different, for example because different parameter values have been used in the simulations, then the variables that are different will be plotted: the verification data in blue, and the latest run in red. In this way the differences can be visually inspected.

13.5 not_used

This files are not used anymore but might be handy for plotting or calculations.

$Brightness_T(H)$

```
vangenuchten (input, thetares, thetasat, alpha, n, option)
```

h = vangenuchten(input,thetares, thetasat, alpha,n,option); if option not specified, or option <>1, h = input, and theta is calculated, otherwise theta = input, and h is calculated

```
calculate_vert_profiles (profiles, canopy)
```

this function is incomplete and apparently never called

These are useful for the visualization of results

```
plot_directional_figure4_function(directory)
```

Use: plot_directional_figure4(directory) makes BRDF, BFDF and bidirectional temperature polar plots from a SCOPE output directory (string 'directory') of directional data.

resizefigure (spfig, nx, ny, xo, yo, xi, yi, xend, yend)

progressbar (varargin)

Description: progressbar() provides an indication of the progress of some task using

graphics and text. Calling progressbar repeatedly will update the figure and automatically estimate the amount of time remaining.

This implementation of progressbar is intended to be extremely simple to use

while providing a high quality user experience.

Features:

- Can add progressbar to existing m-files with a single line of code.
- Supports multiple bars in one figure to show progress of nested loops.

- Optional labels on bars.
- Figure closes automatically when task is complete.
- Only one figure can exist so old figures don't clutter the desktop.
- Remaining time estimate is accurate even if the figure gets closed.
- Minimal execution time. Won't slow down code.
- Randomized color. When a programmer gets bored...
- Example Function Calls For Single Bar Usage: progressbar % Initialize/reset progressbar(0) % Initialize/reset progressbar('Label') % Initialize/reset and label the bar progressbar(0.5) % Update progressbar(1) % Close
- Example Function Calls For Multi Bar Usage: progressbar(0, 0) % Initialize/reset two bars progressbar('A', '') % Initialize/reset two bars with one label progressbar(', 'B') % Initialize/reset two bars with one label progressbar('A', 'B') % Initialize/reset two bars with two labels progressbar(0.3) % Update 1st bar progressbar(0.3, []) % Update 1st bar progressbar([], 0.3) % Update 2nd bar progressbar(0.7, 0.9) % Update both bars progressbar(1) % Close progressbar(1, []) % Close progressbar(1, 0.4) % Close

Notes: For best results, call progressbar with all zero (or all string) inputs

before any processing. This sets the proper starting time reference to calculate time remaining.

Bar color is choosen randomly when the figure is created or reset. Clicking

the bar will cause a random color change.

Demos: % Single bar m = 500; progressbar % Init single bar for i = 1:m

pause(0.01) % Do something important progressbar(i/m) % Update progress bar

end

% Simple multi bar (update one bar at a time) m = 4; n = 3; p = 100; progressbar(0,0,0) % Init 3 bars for i = 1:m

progressbar([],0) % Reset 2nd bar for j = 1:n

progressbar([],[],0) % Reset 3rd bar for k = 1:p

pause(0.01) % Do something important progressbar([],[],k/p) % Update 3rd bar

end progressbar([],j/n) % Update 2nd bar

end progressbar(i/m) % Update 1st bar

end

% Fancy multi bar (use labels and update all bars at once) m = 4; n = 3; p = 100; progressbar('Monte Carlo Trials', 'Simulation', 'Component') % Init 3 bars for i = 1:m

for **j** = 1:n

```
for \mathbf{k} = 1:p pause(0.01) % Do something important % Update all bars frac3 = k/p; frac2 = ((j-1) + frac3) / n; frac1 = ((i-1) + frac2) / m; progressbar(frac1, frac2, frac3)
```

end

end

end

Author: Steve Hoelzer

Revisions: 2002-Feb-27 Created function 2002-Mar-19 Updated title text order 2002-Apr-11 Use floor instead of round for percentdone 2002-Jun-06 Updated for speed using patch (Thanks to waitbar.m) 2002-Jun-19 Choose random patch color when a new figure is created 2002-Jun-24 Click on bar or axes to choose new random color 2002-Jun-27 Calc time left, reset progress bar when fractiondone == 0 2002-Jun-28 Remove extraText var, add position var 2002-Jul-18 fractiondone input is optional 2002-Jul-19 Allow position to specify screen coordinates 2002-Jul-22 Clear vars used in color change callback routine 2002-Jul-29 Position input is always specified in pixels 2002-Sep-09 Change order of title bar text 2003-Jun-13 Change 'min' to 'm' because of built in function 'min' 2003-Sep-08 Use callback for changing color instead of string 2003-Sep-10 Use persistent vars for speed, modify titlebarstr 2003-Sep-25 Correct titlebarstr for 0% case 2003-Nov-25 Clear all persistent vars when percentdone = 100 2004-Jan-22 Cleaner reset process, don't create figure if percentdone = 100 2004-Jan-27 Handle incorrect position input 2004-Feb-16 Minimum time interval between updates 2004-Apr-01 Cleaner process of enforcing minimum time interval 2004-Oct-08 Seperate function for timeleftstr, expand to include days 2004-Oct-20 Efficient if-else structure for sec2timestr 2006-Sep-11 Width is a multiple of height (don't stretch on widescreens) 2010-Sep-21 Major overhaul to support multiple bars and add labels

This functions are present inside RTMo as nested functions

e2phot(lambda, E)

molphotons = e2phot(lambda,E) calculates the number of moles of photons corresponding to E Joules of energy of wavelength lambda (m)

ephoton (lambda)

E = phot2e(lambda) calculates the energy content (J) of 1 photon of wavelength lambda (m)

13.6 +plot

plots (Output_dir)

plots.m (script) makes plots the output of SCOPE_v1.51 of the latest run.

BIBLIOGRAPHY

- G.James Collatz, J.Timothy Ball, Cyril Grivet, and Joseph A Berry. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. *Agric. For. Meteorol.*, 54(2-4):107–136, apr 1991. URL: https://www.sciencedirect.com/science/article/ pii/0168192391900028, doi:10.1016/0168-1923(91)90002-8.
- [2] GJ Collatz, M Ribas-Carbo, and JA Berry. Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C \textless sub\textgreater 4\textless /sub\textgreater Plants. *Aust. J. Plant Physiol.*, 19(5):519, 1992. URL: http://www.publish.csiro.au/?paper=PP9920519, doi:10.1071/PP9920519.
- [3] Albert Porcar-Castell. A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris. *Physiol. Plant.*, 143(2):139–153, oct 2011. URL: http://www.ncbi.nlm.nih.gov/pubmed/21615415http://doi.wiley.com/10.1111/j.1399-3054.2011.01488.x, doi:10.1111/j.1399-3054.2011.01488.x.
- [4] G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and J. V. Martonchik. Reflectance quantities in optical remote sensing-definitions and case studies. *Remote Sens. Environ.*, 103(1):27–42, 2006. doi:10.1016/j.rse.2006.03.002.
- [5] Christiaan van der Tol, Micol Rossini, Sergio Cogliati, Wouter Verhoef, Roberto Colombo, Uwe Rascher, and Gina Mohammed. A model and measurement comparison of diurnal cycles of sun-induced chlorophyll fluorescence of crops. *Remote Sens. Environ.*, 186:663–677, dec 2016. URL: https://www.sciencedirect.com/science/ article/pii/S0034425716303649, doi:10.1016/j.rse.2016.09.021.
- [6] Wout. Verhoef and Nationaal Lucht- en Ruimtevaartlaboratorium (Netherlands). Theory of radiative transfer models applied in optical remote sensing of vegetation canopies. [publisher not identified], 1998. ISBN 9054858044. URL: https://library.wur.nl/WebQuery/wda/945481.
- [7] Nastassia Vilfan, Christiaan van der Tol, Onno Muller, Uwe Rascher, and Wouter Verhoef. Fluspect-B: A model for leaf fluorescence, reflectance and transmittance spectra. *Remote Sens. Environ.*, 186:596–615, 2016. URL: http://dx.doi.org/10.1016/j.rse.2016.09.017, doi:10.1016/j.rse.2016.09.017.
- [8] XINYOU YIN, JEREMY HARBINSON, and PAUL C. STRUIK. Mathematical review of literature to assess alternative electron transports and interphotosystem excitation partitioning of steady-state C3 photosynthesis under limiting light. *Plant, Cell Environ.*, 29(9):1771–1782, sep 2006. URL: http://doi.wiley.com/10.1111/j.1365-3040. 2006.01554.x, doi:10.1111/j.1365-3040.2006.01554.x.
- [9] Xinyou Yin and Paul C. Struik. Crop systems biology as an avenue to bridge applied crop science and fundamental plant biology. In *Proc. - 2012 IEEE 4th Int. Symp. Plant Growth Model. Simulation, Vis. Appl. PMA 2012*, 15–17. IEEE, oct 2012. URL: http://ieeexplore.ieee.org/document/6524806/, doi:10.1109/PMA.2012.6524806.
- [10] C Van der Tol, J A Berry, P K E Campbell, and U Rascher. Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. J. Geophys. Res. Biogeosciences, 119(12):2312–2327, 2014.

[11] C. Van der Tol, W. Verhoef, J Timmermans, A Verhoef, and Z Su. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. *Biogeosciences*, 6(12):3109–3129, dec 2009. URL: www.biogeosciences.net/6/3109/2009/, doi:10.5194/bg-6-3109-2009.

MATLAB MODULE INDEX

S

src,99
src.+equations,107
src.+helpers,109
src.+io,109
src.+plot,112
src.not_used,110

INDEX

A

aggreg() (in module src.+helpers), 109
assignvarnames() (in module src.+io), 109

В

biochemical() (in module src), 99
biochemical_MD12() (in module src), 100
Brightness_T() (in module src.not_used), 110
BSM() (in module src), 100

С

D

define_bands() (in module src.+io), 109
define_constants() (in module src.+io), 109

E

e2phot() (in module src.not_used), 112
ebal() (in module src), 100
ephoton() (in module src.not_used), 112

F

Η

heatfluxes() (in module src), 103

L

L

leafangles() (in module src.+equations), 108
load_timeseries() (in module src.+io), 109

Μ

meanleaf() (in module src.+equations), 108

0

output_data() (in module src.+io), 109
output_verification() (in module src.+io), 110

Ρ

R

readStructFromExcel() (in module src.+io), 109
resistances() (in module src), 103
resizefigure() (in module src.not_used), 110
RTMf() (in module src), 103
RTMo() (in module src), 104
RTMt_planck() (in module src), 105
RTMt_sb() (in module src), 106
RTMz() (in module src), 106

S

satvap() (in module src.+equations), 108
select_input() (in module src.+io), 109
Sint() (in module src.+helpers), 109
Soil_Inertia0() (in module src.+equations), 108
Soil_respiration() (in module src.+equations), 108
src(module), 99
src.+equations(module), 107
src.+helpers(module), 109
src.+io(module), 109
src.+plot(module), 112

src.not_used (module), 110

Т

tav() (in module src.+equations), 108

V

vangenuchten() (in module src.not_used), 110

Ζ

<code>zo_and_d()</code> (in module src.+equations), 108